Search results

1 – 10 of 195
Article
Publication date: 4 December 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

Concrete, the second most used material in the world, surpassed only by water, relies on a vast amount of cement. The process of cement production emits substantial amounts of…

Abstract

Purpose

Concrete, the second most used material in the world, surpassed only by water, relies on a vast amount of cement. The process of cement production emits substantial amounts of carbon dioxide (CO2). Consequently, it is crucial to search for cement alternatives. Geopolymer concrete (GC) uses industrial by-product material instead of traditional cement, which not only reduces CO2 emissions but also enhances concrete durability. On the other hand, the disposal of concrete waste in the landfills represents a significant environmental challenge, emphasising the urgent need for sustainable solutions. This study aimed to investigate waste concrete's best form and rate as the alternative aggregates in self-compacting and ambient-cured GC to preserve natural resources, reduce construction and demolition waste and decrease pertinent CO2 emissions. The binding material employed in this research encompasses fly ash, slag, micro fly ash and anhydrous sodium metasilicate as an alkali activator. It also introduces the best treatment method to improve the recycled concrete aggregate (RCA) quality.

Design/methodology/approach

A total of25%, 50% and 100% of coarse aggregates are replaced with RCAs to cast self-compacting geopolymer concrete (SCGC) and assess the impact of RCA on the fresh, hardened and water absorption properties of the ambient-cured GC. Geopolymer slurry was used for coating RCAs and the authors examined the effect of one-day and seven-day cured coated RCA. The mechanical properties (compressive strength, splitting tensile strength and modulus of elasticity), rheological properties (slump flow, T500 and J-ring) and total water absorption of RCA-based SCGC were studied. The microstructural and chemical compositions of the concrete mixes were studied by the methods of energy dispersive X-Ray and scanning electron microscopy.

Findings

It is evident from the test observations that 100% replacement of natural aggregate with coated RCA using geopolymer slurry containing fly ash, slag, micro fly ash and anhydrous sodium metasilicate cured for one day before mixing enhances the concrete's quality and complies with the flowability requirements. Assessment is based on the fresh and hardened properties of the SCGC with various RCA contents and coating periods. The fresh properties of the mix with a seven-day curing time for coated RCA did not meet the requirements for self-compacting concrete, while this mix demonstrated better compressive strength (31.61 MPa) and modulus of elasticity (15.39 GPa) compared to 29.36 MPa and 9.8 GPa, respectively, for the mix with one-day cured coated RCA. However, incorporating one-day-cured coated RCA in SCGC demonstrated better splitting tensile strength (2.32 MPa) and water absorption (15.16%).

Research limitations/implications

A potential limitation of this study on SCGC with coated RCAs is the focus on the short-term behaviour of this concrete. This limited time frame may not meet the long-term requirements for ensuring the sustained durability of the structures throughout their service life.

Originality/value

This paper highlights the treatment technique of coating RCA with geopolymer slurry for casting SCGC.

Details

Smart and Sustainable Built Environment, vol. 13 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 20 June 2019

Faeze Nejati, Samira Ahmadi and S.A. Edalatpanah

Modern construction methods have been developed with the goal of reducing construction time as much as possible, which results in some situations during construction and within…

Abstract

Purpose

Modern construction methods have been developed with the goal of reducing construction time as much as possible, which results in some situations during construction and within the first few days after it, when concrete is subjected to exceptionally high loads. The precast concrete, which is the concrete in very early ages, may result in severe cracks or damages. In conventional construction projects, sometimes working with concrete, which had not reached its ultimate strength, is an unavoidable matter of fact. This paper aims to discuss these issues.

Design/methodology/approach

Researchers in the field of construction materials have done their best to make some changes in the different parts of the concrete in order to bring about reforms, based on the existing needs, and achieve new quality and primacy from concrete. One kind of concrete, the emergence of which dates back to many years ago, is self-compacting concrete. Thanks to its high efficiency for the parts with complex forms of high-density steel, this kind of concrete suggests new prospects.

Findings

This study aims at evaluating the effect of early loads on the 28-day compressive strength of concretes with zeolite and limestone powder under different curing conditions (wet or dry). In this regard, two self-compacting concrete mix designs with the same ratio of water to cementations materials and 0.4 percent and 10 percent zeolite have been considered; therefore, concrete cube samples with zeolite and limestone powder in different curing conditions at ages of three, one and seven days under preloading with 80–90 percent of compressive strength are damaged, and after curing in different conditions, their 28-day compressive strength is measured. According to the results, the recovery of the 28-day compressive strength of damaged samples, compared to that of intact samples, is possible in all curing conditions. The experiments that have been performed on concrete samples under dry and wet curing conditions show that the full recovery of compressive strength of damaged samples compared to that of intact ones happened only in preloaded samples at the age of one days, and in other ages (three and seven days) the 28-day strength reduction has occurred in damaged samples compared to the that in intact samples. The results of concrete samples with zeolite and without limestone powder at the age of one day indicate the greatest impact on other samples on the 28-day compressive strength of damaged samples compared to that of intact ones, occurring under dry condition.

Originality/value

This research analyzed and studied the influence under wet and dry curing conditions and the presence of limestone powder and zeolite fillers in recovering of the 28-day compressive strength of preloaded concrete samples at early stages (one, three and seven days) after the construction of the concrete.

Details

International Journal of Structural Integrity, vol. 10 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 July 2023

Ala'aldin Al-Hassoun and Rabab Allouzi

Concrete-filled double skin steel tubes (CFDST) columns are taken more attention due to their ability to withstand high structural loads in structures such as high-rise buildings…

Abstract

Purpose

Concrete-filled double skin steel tubes (CFDST) columns are taken more attention due to their ability to withstand high structural loads in structures such as high-rise buildings, bridges' piers, offshore and marine structures. This paper is intended to improve the CFDST column's capacity without the need to increase the column's size to maintain its lightweight by filling it with self-compacted concrete (SCC) containing nanoclay (NC).

Design/methodology/approach

First, experimental investigation is conducted to select the optimal NC percentage that improves the mechanical properties. Different mixing method, mixture ingredients, cement content, and NC percentage are considered. Then, slender and short CFDST columns are tested for axial capacity to investigate the effect of adding the optimum NC percentage on column's capacity and failure mode.

Findings

The test results show that adding 3% NC by cement weight using dry mixing method to SCC is the optimum ratio. It is concluded that adding 3% NC by cement weight increased the CFDST column's capacity, especially the specimens with higher slenderness ratio. Moreover, it is concluded that more specimens should be tested under various geometric and reinforcement details.

Originality/value

Recently, CFDST tube columns solve many structural and architectural problems that engineers have encountered in traditional systems. Therefore, more studies are required to design high-performance columns capable of carrying complex loads with high efficiency since the traditional design could not achieve the required performance. Since concrete contributes to a large portion in the axial capacity of the CFDST columns, it is proposed to improve the CFDST column's capacity without the need to increase the column's size to maintain its lightweight by filling it with (SCC containing NC. Previous research has affirmed the effectiveness of employing nanoclay in the concrete's workability, durability, microstructures, and mechanical properties.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 25 June 2019

Sachin B.P. and N. Suresh

The present experimental investigation attempts to study the behaviour of hybrid fibre-reinforced self-compacting concrete (HFSCC) subjected to elevated temperature. The purpose…

Abstract

Purpose

The present experimental investigation attempts to study the behaviour of hybrid fibre-reinforced self-compacting concrete (HFSCC) subjected to elevated temperature. The purpose of this study is to find out the performance of hybrid fibres of 0.5 per cent by volume of concrete (out of which 75 per cent are steel fibres and 25 per cent, polypropylene fibres). Reinforced beams were casted and tested for the flexural load-carrying capacity, and comparisons were made with the load-carrying capacity of reinforced beams without the inclusion of fibres.

Design/methodology/approach

The study includes 60 concrete cubes of 150 mm and 60 beams of 150 × 150 × 1,100 mm reinforced with minimum tension reinforcement according to IS 456-2000. The specimens were subjected to elevated temperature from 100°C to 500°C with an interval of 100°C for 2 h. The residual compressive strength and the load-carrying capacity of beams for 5-mm deflection were measured. Parameters such as load at first crack, width and length of cracks developed on the beam during the application of load were also studied.

Findings

The result shows that for self-compacting concrete without fibres (SCCWOF), there is a gain in compressive strength between 200°C and 300°C, beyond which the strength decreases. For HFSCC, the gain in strength is between 300°C and 400°C, and thereafter the strength gets reduced. The load-carrying capacity of beams reduces with an increase in temperature. An increase in load-carrying capacity (up to 40.7 per cent) for HFSCC beams is observed when compared to SCCWOF beams at 500°C.

Originality/value

Better performance was observed with the usage of fibres when the specimens were subjected to elevated temperatures.

Details

Journal of Structural Fire Engineering, vol. 10 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 26 December 2023

Manjunatha M. and Kavitha T.S.

The purpose of this study is to investigate the behaviour of M40 grade of self-compacting concrete (SCC) with high volume of ground granulated blast furnace slag (GGBS) (50%) and…

Abstract

Purpose

The purpose of this study is to investigate the behaviour of M40 grade of self-compacting concrete (SCC) with high volume of ground granulated blast furnace slag (GGBS) (50%) and recycled concrete aggregate (RCA) content up to 100% to assess the mechanical properties of SCC. As per guidelines of IS: 383 – 2016, the RCA can be replaced up to 20% of natural coarse aggregate up to M25 grade of concrete. This study assesses the mechanical properties of SCC beyond 20% of RCA content. Based on the experimental investigations, the compressive strength of mixes decreases as the content of RCA increases. It is found that concrete mixes with 20% RCA and shows the maximum compressive strength at 56 days.

Design/methodology/approach

The fresh properties as per EFNARC and IS: 10262–2019 guidelines, ultrasonic pulse velocity testing, mechanical properties and microstructure analysis have been conducted to evaluate the performance of SCC with RCA for practical applications.

Findings

From the experimental investigations, it is found that up to 50% of recycled coarse aggregate can be used for structural applications.

Originality/value

The environmental pollution and dumping of waste on green land can be reduced by effective utilization of recycled coarse aggregate and GGBS in the production of SCC.

Article
Publication date: 18 March 2014

N. Anand, G. Arulraj and C. Aravindhan

Development of Self Compacting Concrete (SCC) is considered as one of the most significant development in the construction industry due to its numerous inherited benefits. With…

Abstract

Development of Self Compacting Concrete (SCC) is considered as one of the most significant development in the construction industry due to its numerous inherited benefits. With the introduction of super-plasticizers and viscosity modifying agents, it is now possible to produce concrete with high fluidity, good cohesiveness which does not require external energy for compaction. The proper understanding of the effects of elevated temperatures on the properties of SCC is necessary to ensure the safety of buildings made with SCC during fire. During the present investigation, an attempt has been made to study the stress-strain behaviour of Normal Compacting Concrete (NCC) and Self Compacting Concrete at a temperature of 900°C. A significant reduction in the Ultimate compressive strength of SCC was observed during this study. The reduction was found to be more for SCC compared to Normal compacting concrete. The reduction in the compressive strength of SCC was found to be 81.5 % for M40 concrete when exposed to 900°C.

Details

Journal of Structural Fire Engineering, vol. 5 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 14 August 2024

Ala Taleb Obaidat, Yasmeen Taleb Obaidat and Ahmed Ashteyat

In this experimental investigation, the behavior of strengthened/repaired heat-damaged one-way self-compacted concrete (SCC) slabs with opening utilizing…

Abstract

Purpose

In this experimental investigation, the behavior of strengthened/repaired heat-damaged one-way self-compacted concrete (SCC) slabs with opening utilizing near-surface-mounted-carbon fiber reinforced polymers (NSM-CFRP) strips was explored.

Design/methodology/approach

CFRP strip configurations, number of strips and inclination were all investigated in this study. For three hours, slabs were exposed to temperatures of 23°C and 500°C. Four-point load was applied to control slabs, enhanced slabs and repaired slabs.

Findings

The results indicate that exposing the slabs to high temperatures reduces their load capability. The number of strips and angle of inclination around the slab opening have a considerable impact on the performance of the strengthened and/or repaired slabs, according to the experimental results. The load capacity, toughness and ductility index of a strengthened and/or repaired slab with opening increase as the number of CFRP strips increases by 143.8–150.5%, 137.3–149.9% and 122.3–124.5%, respectively. The use of NSM strips around the opening with zero inclination showed higher load compared to the NSM strips around the opening with other angles.

Originality/value

It is frequently important to construct openings in the slabs for ventilation, electrical supply, and other purposes. Making openings in slabs might affect the structure’s performance since the concrete and reinforcing would be cut off. SCC is a new type of concrete mixture that can fill in all the voids in the formwork with its own weight without the help of external vibration.  As a result, it is necessary to reinforce the slab under flexure and increase the flexural strength of the SCC slab. Therefore, this work investigates the effect of using NSM-CFRP strip  on the behavior of one way SCC slabs that have been heat-damaged.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 July 2021

Mervin Ealiyas Mathews, Anand N, Diana Andrushia A, Tattukolla Kiran and Khalifa Al-Jabri

Building elements that are damaged by fire are often strengthened by fiber wrapping techniques. Self-compacting concrete (SCC) is an advanced building material that is widely used…

Abstract

Purpose

Building elements that are damaged by fire are often strengthened by fiber wrapping techniques. Self-compacting concrete (SCC) is an advanced building material that is widely used in construction due to its ability to flow and pass through congested reinforcement and fill the required areas easily without compaction. The aim of the research work is to examine the flexural behavior of SCC subjected to elevated temperature. This research work examines the effect of natural air cooling (AC) and water cooling (WC) on flexural behavior of M20, M30, M40 and M50 grade fire-affected retro-fitted SCC. The results of the investigation will enable the designers to choose the appropriate repair technique for improving the service life of structures.

Design/methodology/approach

In this study, an attempt has been made to evaluate the flexural behavior of fire exposed reinforced SCC beams retrofitted with laminates of carbon fiber reinforced polymer (CFRP), basalt fiber reinforced polymer (BFRP) and glass fiber reinforced polymer (GFRP). Beam specimens were cast with M20, M30, M40 and M50 grades of SCC and heated to 925ÂșC using an electrical furnace for 60 min duration following ISO 834 standard fire curve. The heated SCC beams were cooled by either natural air or water spraying.

Findings

The reduction in the ultimate load carrying capacity of heated beams was about 42% and 55% for M50 grade specimens that were cooled by air and water, respectively, in comparison with the reference specimens. The increase in the ultimate load was 54%, 38% and 27% for the specimens retrofitted with CFRP, BFRP and GFRP, respectively, compared with the fire-affected specimens cooled by natural air. Water-cooled specimens had shown higher level of damage than the air-cooled specimens. The specimens wrapped with carbon fiber could able to improve the flexural strength than basalt and glass fiber wrapping.

Originality/value

SCC, being a high performance concrete, is essential to evaluate the performance under fire conditions. This research work provides the flexural behavior and physical characteristics of SCC subjected to elevated temperature as per ISO rate of heating. In addition attempt has been made to enhance the flexural strength of fire-exposed SCC with wrapping using different fibers. The experimental data will enable the engineers to choose the appropriate material for retrofitting.

Details

Journal of Structural Fire Engineering, vol. 12 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 17 March 2022

Maher Taha El-Nimr, Ali Mohamed Basha, Mohamed Mohamed Abo-Raya and Mohamed Hamed Zakaria

To predict the real behavior of the full-scale model using a scale model, optimized simulation should be achieved. In reinforced concrete (RC) models, scaling can be substantially…

Abstract

Purpose

To predict the real behavior of the full-scale model using a scale model, optimized simulation should be achieved. In reinforced concrete (RC) models, scaling can be substantially more critical than in single-material models because of multiple reasons such as insufficient bonding strength between small-diameter steel bars and concrete, and excessive aggregate size. Overall, there is a shortfall of laboratory and field-testing studies on the behavior of secant pile walls under lateral and axial loads. Accordingly, the purpose of this study is to investigate the validity and the performance of the 1/10th scaled RC secant pile wall under the influence of different types of loading.

Design/methodology/approach

The structural performance of the examined models was evaluated using two types of tests: bending and axial compression. A self-compacting concrete mix was suggested, which provided the best concrete mix workability and appropriate compressive strength.

Findings

Under axial and bending loads, the failure modes were typical. Where the plain and reinforced concrete piles worked in tandem to support the load throughout the loading process, even when they failed. The experimental results were relatively consistent with some empirical equations for calculating the modulus of elasticity and critical buckling load. This confirmed the validity of the proposed model.

Originality/value

According to the analysis and verification of experimental tests, the proposed 1/10th scaled RC secant pile model can be used for future laboratory purposes, especially in the field of geotechnical engineering.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 March 2014

Patrick Bamonte and Pietro Gambarova

Durability, high-temperature resistance, impact and blast resilience, radiation-shielding properties, irradiation endurance and - of course - good mechanical properties are…

Abstract

Durability, high-temperature resistance, impact and blast resilience, radiation-shielding properties, irradiation endurance and - of course - good mechanical properties are required of the cementitious composites to be used in a variety of high-performance structures. Among these, tall buildings, road and railway tunnels, off-shore platforms, gasification plants, wind and solar mills for the production of "clean" energy should be mentioned, as well as nuclear power plants, and radioactive- and hazardous-waste repositories. Hence, understanding, measuring and modelling concrete behavior under extreme environmental conditions is instrumental in making concrete structures safer and more efficient. To this end, the hot and residual properties associated with the exposure to high temperature, fire and thermal shock are treated in this paper. Reference is made to ordinary vibrated concrete (Normal-Strength Concrete - NSC), as well as to a number of innovative cementitious composites, such as Fiber-Reinforced Concrete - FRC, High-Performance/High-Strength Concrete - HPC/HSC, Ultra High-Performance/Very High-Strength Concrete - UHPC /VHSC, Self-Compacting/Consolidating Concrete - SCC, Light-Weight Concrete - LWC, shotcrete and high-strength mortars. It is shown that these materials can be "tailored" according to a variety of requirements and functions, even if several aspects of their behavior (like spalling in fire and long-term mechanical properties under sustained high temperature) are still open to investigation.

Details

Journal of Structural Fire Engineering, vol. 5 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 195