Search results

1 – 10 of over 4000
Article
Publication date: 6 June 2016

Zhongcai Shao, Jian Guo and Pin Liu

The paper aims to introduce the process flow of electroless nickel (EN) plating on carbon fiber surfaces, the effect of former processing on the properties of coating and the…

Abstract

Purpose

The paper aims to introduce the process flow of electroless nickel (EN) plating on carbon fiber surfaces, the effect of former processing on the properties of coating and the dynamics of the process.

Design/methodology/approach

The coated fibers were mounted in cold-setting epoxy resin, and transverse cross-section of the coated fibers were examined under an optical microscope to ascertain the thickness, uniformity and continuity of the coating over the fiber surface. The coating morphology was studied by using a scanning electron microscope (SEM). This study also determined the activation energy and electrical properties of EN coated on carbon fibers.

Findings

Activation temperatures have a greater impact on the quality of EN. At a temperature of 80°C, the EN layer prepared was uniform and compact and fully coated the carbon fibers. The optimum components of the EN plating process is NiSO4: 28 g/L; NaH2PO2: 30 g/L; NaAc: 20 g/L; Na3C6H5O7:10 g/L; C4O6H2KNa: 2 g/L; (NH4)2SO4: 18 g/L; thiourea and lead acetate: trace; operating conditions: pH = 8.5, temperature: 70°C; time: 0.5 h). The activation energy of the EN plating on carbon fiber is 12 kJ/mol, and the electrical conductivity of nickel-plated carbon fiber in 80 mL of distilled water is 16.5 μs/cm.

Originality/value

This paper determined the optimum processing conditions and the activation energy of the EN plating on carbon fiber.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 June 2010

Z. Abdel Hamid and A. Abdel Aal

The purpose of this paper is to investigate the deposition of uniform, adherent and crack‐free Ni‐P thin films on carbon fibres using the electroless deposition technique.

Abstract

Purpose

The purpose of this paper is to investigate the deposition of uniform, adherent and crack‐free Ni‐P thin films on carbon fibres using the electroless deposition technique.

Design/methodology/approach

Before applying the electroless process, the carbon fibre surfaces must be subjected to several treatment processes to remove the organic binder, etching and surface metallization. The surface morphology of the Ni‐P coatings was assessed using a scanning electron microscope (SEM). The chemical compositions of Ni‐P layers were identified by energy dispersive X‐ray analysis (EDS). The bond strength of the coated layer was determined by measuring the electrical resistance at the fibre/coating interface. The magnetic properties of the fibres were estimated using a hysteresis diagram. The tensile performance of single fibres coated by Ni‐P has been investigated with respect to coating thickness.

Findings

Pre‐treatment processes are used to improve the adhesion of Ni‐P layers and to obtain homogeneous coatings. The influence of plating parameters (temperature, pH and time) on the coating thickness of the Ni‐P layer was investigated. It was found that the coating thickness increased as the pH value, plating time and the temperature of the bath increased. The results revealed that a complete and uniform Ni‐P coating on fibre could be obtained at optimum conditions 85°C, pH 6, for 60 min, and the results indicated that the P content in the electroless deposit is approximately 3.4 wt%. The tensile strength values are improved significantly after coating and increased by 3‐5 times with increasing of coating thickness from 0.3 to 2 μm.

Originality/value

The results presented in this work are an insight into understanding of the deposition and adherence of Ni‐P thin films on carbon fibre using the electroless technique and behaviour of the coated fibre.

Details

Anti-Corrosion Methods and Materials, vol. 57 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 23 June 2023

Sanna F. Siddiqui, Andre Archer, Dustin Fandetti and Carl McGee

The aerospace, energy and automotive industries have seen wide use of composite materials because of their excellent mechanical properties, along with the benefit of weight…

Abstract

Purpose

The aerospace, energy and automotive industries have seen wide use of composite materials because of their excellent mechanical properties, along with the benefit of weight reduction savings. As such, the purpose of this study is to provide an understanding of the mechanical performance of these materials under extreme operational conditions characteristic of in-service environments.

Design/methodology/approach

This study is novel in that it has evaluated the tensile performance and fracture response of additively manufactured continuous carbon fiber embedded in an onyx matrix (i.e. nylon with chopped carbon fiber) at cryogenic and room temperatures, for specimens manufactured with an angle between the specimen lying plane and the working build plane of 0°, 45° and 90°.

Findings

Research findings reveal enhanced tensile properties (i.e. ultimate tensile strength and modulus of elasticity) by the 0° (X) built specimens, as compared with the 45° (XZ45) and 90° (Z) built specimens at cryogenic temperature. A reduction in ductility is observed at cryogenic temperature for all build orientations. Fractographic analysis reveals the presence of fiber pullout/elongation, pores within the onyx matrix and chopped carbon fiber near fracture zone of the onyx matrix.

Research limitations/implications

Research findings present tensile properties (i.e. ultimate tensile strength, modulus of elasticity and elongation%) for three-dimensional (3D)-printed onyx with and without reinforcing continuous carbon fiber composites at cryogenic and room temperatures. Reinforcement of continuous carbon fibers and reduction to cryogenic temperatures appears to result, in general, in an increase in the tensile strength and modulus of elasticity, with a reduction in elongation% as compared with the onyx matrix tensile performance reported at room temperature. Fracture analysis reveals continuous carbon fiber pull out for onyx–carbon fiber samples tested at room temperature and cryogenic temperatures, suggesting weak onyx matrix–continuous carbon fiber adhesion.

Originality/value

To the best of the authors’ knowledge, this study is the first study to report on the cryogenic tensile properties and fracture response exhibited by 3D-printed onyx–continuous carbon fiber composites. Evaluating the viability of common commercial 3D printing techniques in producing composite parts to withstand cryogenic temperatures is of critical import, for aerospace applications.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 September 2019

Faezeh Nejati and S.A. Edalatpanah

The purpose of this paper is to investigate the effect of steel and carbon fibers on the mechanical properties of light concrete in terms of tension strength, compressive strength…

94

Abstract

Purpose

The purpose of this paper is to investigate the effect of steel and carbon fibers on the mechanical properties of light concrete in terms of tension strength, compressive strength and elastic modulus under completely dry and wet conditions.

Design/methodology/approach

In this study, the lightweight concrete made of Light Expanded Clay Aggregate (LECA) as coarse aggregate and sand as fine aggregate was used. To achieve a compressive strength of at least 20 MPa, microsilica was used 10 percent by weight of cement. In order to compensate for the reduction of tension strength of concrete, steel and carbon fibers were used with three volume ratio of 0.5, 1 and 1.5 percent in concrete. The results of concrete specimens were studied at the age of 7, 28, 42 and 90 days under controlled dry and wet conditions.

Findings

The results showed that the addition of steel and carbon fibers to the concrete mixture would reduce the drop in slump. Also, the use of steel and carbon fibers plays a significant role in increasing the tension strength of the specimens. Furthermore, the highest increase in tension strength of steel and carbon fiber samples was 83.3 and 50 percent, respectively, than the non-fibrous specimen when evaluated at 90 days of age. Moreover, the steel and carbon fiber increased the water absorption of the samples. Adding steel and carbon fibers to a lightweight concretes mixture containing LECA aggregates plays a significant role in increasing the modulus of elasticity of the samples. The highest increase in the elastic modulus of steel and carbon fibers was 18.9 and 35.4 percent, respectively, than the non-fibrous specimen at 28 days of age.

Originality/value

In this paper, the authors investigated the mechanical properties of steel fiber and carbon reinforced concrete. Also, according to the conditions of storage of samples and the age of concrete (day), the experiments were carried out on samples.

Details

International Journal of Structural Integrity, vol. 11 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 August 2019

Lei Guo, Lien Zhu, Lei Ma, Jian Zhang, QiuYu Meng, Zheng Jin, Meihua Liu and Kai Zhao

The purpose of this paper is to prepare a spherical modifier-modified activated carbon fiber of high specific capacitance intended for electrode materials of supercapacitor.

Abstract

Purpose

The purpose of this paper is to prepare a spherical modifier-modified activated carbon fiber of high specific capacitance intended for electrode materials of supercapacitor.

Design/methodology/approach

In this study, phenolic-based microspheres are taken as modifiers to prepare PAN-based fiber composites by electrospinning, pre-oxidation and carbonization. Pearl-chain structures appear in RFC/ACF composites, and pure polyacrylonitrile fibers show a dense network. The shape and cross-linking degree are large. After the addition of the phenolic-based microspheres, the composite material exhibits a layered pearlite chain structure with a large porosity, and the RFC/ACF composite material is derived because of the existence of a large number of bead chain structures in the composite material. The density increases, the volume declines and the mass after being assembled into a supercapacitor as a positive electrode material decreases. The specific surface area of RFC/ACF composites is increased as compared to pure fibers. The increase in specific surface area could facilitate the diffusion of electrolyte ions in the material. Owing to the large number of bead chains, plenty of pore channels are provided for the diffusion of electrolyte ions, which is conducive to enhancing the electrochemical performance of the composite and improving the RFC/ACF composite and the specific capacitance of the material. The methods of electrochemical testing on symmetric supercapacitors (as positive electrodes) are three-electrode cyclic voltammetry, alternating current impedance and cycle stability.

Findings

The specific capacitance value of the composite material was found to be 389.2 F/g, and the specific capacitance of the electrode operating at a higher current density of 20 mA/cm2 was 11.87 F/g (the amount of the microsphere modifier added was 0.3 g). Using this material as a positive electrode to assemble into asymmetrical supercapacitor, after 2,000 cycles, the specific capacitance retention rate was 87.46 per cent, indicating excellent cycle stability performance. This result can be attributed to the fact that the modifier embedded in the fiber changes the porosity between the fibers, while improving the utilization of the carbon fibers and making it easier for electrolyte ions to enter the interior of the composites, thereby increasing the capacitance of the composites.

Originality/value

The modified PAN-based activated carbon fibers in the study had high specific surface area and significantly high specific capacitance, which makes it applicable as an efficient and environment-friendly absorbent, as well as an advanced electrode material for supercapacitor.

Article
Publication date: 19 June 2021

Sathiyamoorthy Margabandu and Senthil Kumar Subramaniam

The study aims to investigate the influence of fabric hybridization, stacking sequences and matrix materials on the tensile strength and damping behavior of jute/carbon reinforced…

Abstract

Purpose

The study aims to investigate the influence of fabric hybridization, stacking sequences and matrix materials on the tensile strength and damping behavior of jute/carbon reinforced hybrid composites.

Design/methodology/approach

The hybrid composites were fabricated with different sequences of fabric plies in epoxy and polyester matrix using a hand layup technique. The tensile and vibration characteristics were evaluated on the hybrid laminated composite models using finite element analysis (FEA), and the results were validated experimentally according to ASTM standards. The surface morphology of the fractured specimens was studied using the scanning electron microscope.

Findings

The experimental results revealed that the position of jute layers in the hybrid composites has a significant influence on the tensile strength and damping behavior. The hybrid composite with jute fiber at the surface sides and carbon fibers at the middle exhibited higher tensile strength with superior damping properties. Further, it is found that the experimental results are in good coherence with the FEA results.

Originality/value

The less weight and low-cost hybrid composites were fabricated by incorporating the jute and carbon fabrics in interply configurations. The influences of fabric hybridization, stacking arrangements and matrix materials on the tensile and vibration behavior of jute/carbon hybrid composites have been numerically evaluated and the results were experimentally validated.

Details

World Journal of Engineering, vol. 19 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 June 2020

Payman Sahbah Ahmed, Manar Nazar Ahmed and Samal Osman Saied

The purpose of this research is using materials to improve the thermal insulation, and reducing the cost. A large amount of energy is consumed by masonary due to cooling and…

Abstract

Purpose

The purpose of this research is using materials to improve the thermal insulation, and reducing the cost. A large amount of energy is consumed by masonary due to cooling and heating. Adding material with certain percentages to the building materials is one of the ways to improve the thermal insulation, and these additives should keep as much as possible the mechanical properties of the building materials. Carbon additives are one of commonly used materials to masonry materials. In spite of the many advantages of using carbon fibers and carbon nano tubes (CNTs) to the cementitious materials, they are very expansive and their thermal conductivity is high.

Design/methodology/approach

In this research charcoal (which is a product of burning process) with very low thermal conductivity and cost in the form of micro particles will be used with mortar and compared with short carbon fibers and multiwall carbon nanotubes (MWCNTs) via thermal conductivity, density and compressive strength tests. This research includes also an effort to build a model of building to evaluate the thermal insulation of the materials used in the practical part. The main building design and performance simulation tool in this research is DesignBuilder.

Findings

Results showed that adding micro charcoal particles to mortar resulted in improving the thermal insulation and decrease the rate of reduction in the compressive strength compared to other additives, while adding short carbon fibers resulted in improving the thermal insulation and decrease the compressive strength. Adding MWCNT to the mortar had a negative effect on mechanical and physical properties, i.e. compressive strength, density and thermal insulation.

Originality/value

This paper uses DesignBuilder software to design a model of building made from the materials used in the practical part to predict and evaluate the thermal insulation.

Details

World Journal of Engineering, vol. 17 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 January 2007

B. Das, S.K. Sahu and B.C. Ray

The objective of the present work is to ascertain the failure modes under different loading speeds along with change in percentage of constituents of FRP composites.

Abstract

Purpose

The objective of the present work is to ascertain the failure modes under different loading speeds along with change in percentage of constituents of FRP composites.

Design/methodology/approach

This involves experimental investigation of FRP composites with woven roving fibers and matrix. Different types of composites, i.e. glass: epoxy, glass: polyester and (carbon+glass): epoxy are used in the investigation with change in percentage of constituents. The variability of fiber content of the composite is in the range of 0.55‐0.65 weight fractions. The matrix dominated property, like inter laminar shear strength (ILSS) has been studied by three point bend test using INSTRON 1195 material testing machine with increasing five cross head velocities.

Findings

The variation of ILSS of laminates of FRP composites is significant for low loading speed and is not so prominent for high speed. The variation of ILSS are observed to be dependent on the type and amount of constituents present in the composites. The laminates with carbon fiber shows higher ILSS than that of glass fiber composites. The laminates with epoxy matrix shows higher ILSS than polyester matrix composites for the same fiber. There is no significant variation of ILSS beyond loading speed 200 mm/min and this can be used for specifications of testing. Matrix resins such as polyester and epoxy are known to be highly rate sensitive. Carbon fiber are relatively rate independent and E‐glass fibers are rate sensitive. Woven roving carbon glass fiber reinforced polymer shows small rate dependence and woven roving glass fiber reinforced polymer shows significant rate sensitivity.

Originality/value

The findings are based on original experimental investigations in the laboratories of the institute and can be used for characterization of composites.

Details

Aircraft Engineering and Aerospace Technology, vol. 79 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 29 August 2019

Hongbin Li, Taiyong Wang, Sanjay Joshi and Zhiqiang Yu

Continuous fiber-reinforced thermoplastic composites are being widely used in industry, but the fundamental understanding of their properties is still limited. The purpose of this…

Abstract

Purpose

Continuous fiber-reinforced thermoplastic composites are being widely used in industry, but the fundamental understanding of their properties is still limited. The purpose of this paper is to quantitatively study the effects of carbon fiber content on the tensile strength of continuous carbon fiber-reinforced polylactic acid (CCFRPLA) fabricated through additive manufacturing using the fused deposition modeling (FDM) process.

Design/methodology/approach

The strength of these materials is highly dependent on the interface that forms between the continuous fiber and the plastic. A cohesive zone model is proposed as a theoretical means to understand the effect of carbon fiber on the tensile strength properties of CCFRPLA. The interface formation mechanism is explored, and the single fiber pulling-out experiment is implemented to investigate the interface properties of CCFRPLA. The fracture mechanism is also explored by using the cohesive zone model.

Findings

The interface between carbon fiber and PLA plays the main role in transferring external load to other fibers within CCFRPLA. The proposed model established in this paper quantitatively reveals the effects of continuous carbon fiber on the mechanical properties of CCFRPLA. The experimental results using additively manufacturing CCFRPLA provide validation and explanation of the observations based on the quantitative model that is established based on the micro-interface mechanics.

Research limitations/implications

The predict model is established imagining that all the fibers and PLA form a perfect interface. While in a practical situation, only the peripheral carbon fibers of the carbon fiber bundle can fully infiltrate with PLA and form a transmission interface. These internal fibers that cannot contract with PLA fully, because of the limit space of the nozzle, will not form an effective interface.

Originality/value

This paper theoretically reveals the fracture mechanism of CCFRPLA and provides a prediction model to estimate the tensile strength of CCFRPLA with different carbon fiber contents.

Details

Rapid Prototyping Journal, vol. 25 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 August 2017

S. Brischetto

The purpose of this paper is to propose a comparative study between different structures composed of fiber-reinforced composite materials. Plates, cylinders and cylindrical and…

Abstract

Purpose

The purpose of this paper is to propose a comparative study between different structures composed of fiber-reinforced composite materials. Plates, cylinders and cylindrical and spherical shell panels in symmetric 0°/90°/0° and antisymmetric 0°/90°/0°/90° configurations are analyzed considering carbon fiber, glass fiber and linoleum fiber reinforcements.

Design/methodology/approach

A free vibration analysis is proposed for different materials, lamination sequences, vibration modes, half-wave numbers and thickness ratios. Such an analysis is conducted by means of an exact three-dimensional shell model which is valid for simply supported structures and cross-ply laminations. The employed model is based on a layer-wise approach and on three-dimensional shell equilibrium equations written in general orthogonal curvilinear coordinates.

Findings

The proposed study confirms the well-known superiority of the carbon fiber-reinforced composites. Linoleum fiber-reinforced composites prove to be comparable to glass fiber-reinforced composites in the case of free vibration analysis. Therefore, similar frequencies are obtained for all the geometries, thickness ratios, laminations sequences, vibration modes and a large spectrum of half-wave numbers. This partial conclusion needs further confirmations via static, buckling and fatigue analyses.

Originality/value

An exact three-dimensional shell model has been used to compare several geometries embedding carbon fiber composites and natural fiber composites.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 4000