Search results

1 – 10 of over 4000
Article
Publication date: 30 January 2007

B. Das, S.K. Sahu and B.C. Ray

The objective of the present work is to ascertain the failure modes under different loading speeds along with change in percentage of constituents of FRP composites.

Abstract

Purpose

The objective of the present work is to ascertain the failure modes under different loading speeds along with change in percentage of constituents of FRP composites.

Design/methodology/approach

This involves experimental investigation of FRP composites with woven roving fibers and matrix. Different types of composites, i.e. glass: epoxy, glass: polyester and (carbon+glass): epoxy are used in the investigation with change in percentage of constituents. The variability of fiber content of the composite is in the range of 0.55‐0.65 weight fractions. The matrix dominated property, like inter laminar shear strength (ILSS) has been studied by three point bend test using INSTRON 1195 material testing machine with increasing five cross head velocities.

Findings

The variation of ILSS of laminates of FRP composites is significant for low loading speed and is not so prominent for high speed. The variation of ILSS are observed to be dependent on the type and amount of constituents present in the composites. The laminates with carbon fiber shows higher ILSS than that of glass fiber composites. The laminates with epoxy matrix shows higher ILSS than polyester matrix composites for the same fiber. There is no significant variation of ILSS beyond loading speed 200 mm/min and this can be used for specifications of testing. Matrix resins such as polyester and epoxy are known to be highly rate sensitive. Carbon fiber are relatively rate independent and E‐glass fibers are rate sensitive. Woven roving carbon glass fiber reinforced polymer shows small rate dependence and woven roving glass fiber reinforced polymer shows significant rate sensitivity.

Originality/value

The findings are based on original experimental investigations in the laboratories of the institute and can be used for characterization of composites.

Details

Aircraft Engineering and Aerospace Technology, vol. 79 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 May 2019

Jenarthanan M.P., Karthikeyan Marappan and Giridharan R.

The need for seeking alternate materials with increased performance in the field of composites revived this research, to prepare and evaluate the mechanical properties of e-glass

Abstract

Purpose

The need for seeking alternate materials with increased performance in the field of composites revived this research, to prepare and evaluate the mechanical properties of e-glass and aloe vera fiber-reinforced with polyester and epoxy resin matrices.

Design/methodology/approach

The composites are prepared by hand layup method using E-glass and aloe vera fibers with length 5-6 mm. The resin used in the preparation of composites was epoxy and polyester. Fiber-reinforced composites were synthesized at 18:82 fiber–resin weight percentages. Samples prepared were tested to evaluate its mechanical and physical properties, such as tensile strength, flexural strength, impact strength, hardness and scanning electron microscope (SEM).

Findings

SEM analysis revealed the morphological features. E-glass fiber-reinforced epoxy composite exhibited better mechanical properties than other composite samples. The cross-linking density of monomers of the epoxy resin and addition of the short chopped E-glass fibers enhanced the properties of E-glass epoxy fiber-reinforced composite.

Originality/value

This research work enlists the properties of e-glass and aloe vera fiber-reinforced with polyester and epoxy resin matrices which has not been attempted so far.

Details

Pigment & Resin Technology, vol. 48 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2605

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 September 1997

M. Iji and S. Yokoyama

Recycling technology for printed wiring boards (PWBs) with mounted electroniccomponents was studied for the purpose of disassembling the boards, recovering useful materials…

653

Abstract

Recycling technology for printed wiring boards (PWBs) with mounted electronic components was studied for the purpose of disassembling the boards, recovering useful materials, and reusing these materials. An automatic removal method was developed for the electronic components on the basis of a combination of heating to above the solder melting temperature and applying impacting the shearing forces. Most of the electronic components were recovered undamaged and the solder was able to be recovered as particles. The solder remaining on the board was recovered by abrading the board surface and by using a heating‐impacting process. After these processes, the resin board (a cured epoxy resin board reinforced with glass fibre)was pulverised and separated into a copper‐rich powder (copper: 82 Wt%) and a glass fibre and resin mixture powder (glass fibre‐resin powder) by gravimetric and electrostatic methods. The recovered electronic components, solder and copper‐rich powder were used as valuable metal resources for refining. Moreover, the recovered glass fibre‐resin powder was found to be a useful filler for plastic products such as epoxy resin and ABS (acrylonitrile/butadiene/styrene copolymer) resin.

Details

Circuit World, vol. 23 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 9 May 2022

Erfan Najaf, Hassan Abbasi and Seyed Mehdi Zahrai

Today, using lightweight structural concrete plays a major role in reducing the damage to concrete structures. On the other hand, lightweight concretes have lower compressive and…

161

Abstract

Purpose

Today, using lightweight structural concrete plays a major role in reducing the damage to concrete structures. On the other hand, lightweight concretes have lower compressive and flexural strengths with lower impact resistance compared to ordinary concretes. The aim of this study is to investigate the effect of simultaneous use of waste glass powder, microsilica and polypropylene fibers to make sustainable lightweight concrete that has high compressive and flexural strengths, ductility and impact resistance.

Design/methodology/approach

In this article, the lightweight structural concrete is studied to compensate for the lower strength of lightweight concrete. Also, considering the environmental aspects, microsilica as a partial replacement for cement, waste glass powder instead of some aggregates and polypropylene fibers are used. Microsilica was used at 8, 10 and 12 wt% of cement. Waste glass powder was added to 20, 25 and 30 wt% of aggregates, while fibers were used at 0.5, 1 and 1.5 wt% of cement.

Findings

After making the experimental specimens, compressive strength, flexural strength and impact resistance tests were performed. Ultimately, it was concluded that the best percentage of used microsilica and glass powder was equal to 10 and 25%, respectively. Furthermore, using 1.5 wt% of fibers could significantly improve the compressive and flexural strengths of lightweight concrete and increase its impact resistance at the same time. For constructing a five-story building, by replacing cement with microsilica by 10 wt%, the amount of used cement is reduced by 5 tons, consequently producing 4,752 kg less CO2 that is a significant value for the environment.

Originality/value

The study provides a basis for making sustainable lightweight concrete with high strength against compressive, flexural and impact loads.

Details

International Journal of Structural Integrity, vol. 13 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 November 2020

Zhenrong Zheng, Jiawei Wang, Qian Zhang, Kezhu Mao, Lijuan Luo and Yuanjun Liu

The purpose of this paper is to investigate the effects of structural parameters of fabric on thermal insulation properties of the coated fabric.

Abstract

Purpose

The purpose of this paper is to investigate the effects of structural parameters of fabric on thermal insulation properties of the coated fabric.

Design/methodology/approach

The authors established a numerical model for the ablation of silicone resin-coated fabric under high heat flow, and the simulation results have been validated by quartz lamp ablation experiment. The model was used to investigate the effects of structural parameters of glass fiber fabrics on the heat transfer process of the coated fabric.

Findings

The numerical values were in agreement with the experimental values. The thermal insulation of the coated glass fiber fabric was better than coated carbon fabric. Thermal insulation performance of the coated glass fiber fabrics was in order plain < 2/1 twill < 3/3 twill < 5/3 stain fabric. Increasing the warp density, from 100 to 180 ends/10 cm, the temperature of the back surface of the coated glass fiber fabric was reduced from 601°C to 553°C. Thermal insulation performance dramatically increased as yarn fineness went from 129 to 280 tex, and the temperature difference was 63°C.

Research limitations/implications

In the ablation process, to simplify the calculation, the combustion reaction of silicone resin was ignored, which can be added in the future research.

Originality/value

This paper provides the ablation model of the silicon-coated fabric based on the 3D geometry model to explore the influence of the structural parameters of coated glass fiber fabric on its thermal protection performance.

Details

Pigment & Resin Technology, vol. 50 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 February 2022

Nastaran Mosleh, Soheil Dariushi and Masoud Esfandeh

In this paper, continuous glass tow preg-reinforced acrylonitrile butadiene styrene (ABS) composites were fabricated by using a 3D printing method, and the purpose of this study…

Abstract

Purpose

In this paper, continuous glass tow preg-reinforced acrylonitrile butadiene styrene (ABS) composites were fabricated by using a 3D printing method, and the purpose of this study is the investigation of the fiber preimpregnation effect on the mechanical behavior of these composites. In addition, a simple theoretical approach (mixture law), which considers the elastic behavior of reinforced composites and a numerical simulation method based on finite element method (FEM), was used to predict the tensile stress–strain behavior of ABS/glass tow preg composites in the elastic region.

Design/methodology/approach

Different groups of preimpregnated glass tows with various ABS amounts (named 2%, 10%, 20% and 30%) were prepared by the solution impregnation method. Then, preimpregnated glass tows (prepregs or tow-pregs) were fed into the printer head along with the polymeric ABS filament to print the composites. The tensile, flexural and short beam tests were conducted to evaluate the mechanical properties of the printed composites.

Findings

The first result of using tow-pregs instead of dry tows in continuous fiber 3D printing is much easier printing, printability improvement and the possibility of printing layers with low thickness, which can further increase the mechanical properties. The mechanical test results showed all of the glass prepregs improve strength and modulus in the tensile, three-point bending and short beam tests compared with neat ABS specimens, but statistical analysis showed that ABS weight percentage in the prepregs had no significant effect on the mechanical strength of composites except for the tensile modulus. Samples containing 2%-prepreg (minimum ABS amount in the tow-pregs) showed a significant improvement in tensile modulus. In the simulation section, good agreement is obtained between the model predictions and experimental tensile results. The results show that an acceptable deviation (14%) exists between the experimental and predicted value of elastic modulus by the numerical model.

Originality/value

To the best of the authors’ knowledge, this is the first study showing the effects of ABS weight percentage in prepregs on the mechanical properties of 3D printed continuous fiber-reinforced composites and predicting the mechanical behavior of 3D printed composites by numerical simulation method.

Details

Rapid Prototyping Journal, vol. 28 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 July 2012

M.F. Boseman, Y.W. Kwon, D.C. Loup and E.A. Rasmussen

In order to connect a fiberglass composite structure to a steel structure, a hybrid composite made of glass and steel fibers has been studied. The hybrid composite has one end…

Abstract

Purpose

In order to connect a fiberglass composite structure to a steel structure, a hybrid composite made of glass and steel fibers has been studied. The hybrid composite has one end section with all glass fibers and the opposite end section with all steel fibers. As a result, it contains a transition section in the middle of the hybrid composite changing from glass fibers to steel fibers. The purpose of this paper is to examine interface strength at the glass to steel fiber transition section, in order to evaluate the effectiveness of the hybrid composite as a joining technique between a polymer composite structure and a metallic structure.

Design/methodology/approach

The present micromechanical study considers two types of glass to steel fiber joints: butt and overlap joints. For the butt joint, the end shape of the steel fiber is also modified to determine its effect on interface strength. The interface strength is predicted numerically based on the virtual crack closure technique to determine which joint is the strongest under various loading conditions such as tension, shear and bending. Numerical models include resin layers discretely. A virtual crack is considered inside the resin, at the resin/glass‐layer interface, and at the resin/steel‐layer interface. The crack is located at the critical regions of the joints.

Findings

Overall, the butt joint is stronger than the overlap joint regardless of loading types and directions. Furthermore, modification of an end shape of the middle fiber layers in the butt joint shifts the critical failure location.

Originality/value

The paper describes one of a few studies which investigated the interface strength of the hybrid joint made of fiberglass and steel‐fiber composites. This joint is important to connect a polymeric composite structure to a metallic structure without using conventional mechanical joints.

Details

Engineering Computations, vol. 29 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 July 2020

Toqa AL-Kasasbeh and Rabab Allouzi

This research is part of a project that aims to investigate using foamed concrete structurally in houses. Foamed concrete has a porous structure that makes it light in weight…

Abstract

Purpose

This research is part of a project that aims to investigate using foamed concrete structurally in houses. Foamed concrete has a porous structure that makes it light in weight, good in thermal insulation, good in sound insulation and workable.

Design/methodology/approach

An experimental program is conducted in this research to investigate the behavior of polypropylene fiber reinforced foam concrete beams laterally reinforced with/without glass fiber grid.

Findings

The results proved the effectiveness and efficiency of using glass fiber grid as lateral reinforcements on the shear strength of reinforced foam concrete ribs, in reducing the cracks width and increasing its shear capacity, contrary to using glass fiber grid of reinforced foam concrete beams since glass fiber grid did not play good role in beams.

Originality/value

Limited literature is available regarding the structural use of foam concrete. However, work has been done in many countries concerning its use as insulation material, while limited work was done on structural type of foam concrete.

Details

International Journal of Structural Integrity, vol. 12 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 August 2017

S. Brischetto

The purpose of this paper is to propose a comparative study between different structures composed of fiber-reinforced composite materials. Plates, cylinders and cylindrical and…

Abstract

Purpose

The purpose of this paper is to propose a comparative study between different structures composed of fiber-reinforced composite materials. Plates, cylinders and cylindrical and spherical shell panels in symmetric 0°/90°/0° and antisymmetric 0°/90°/0°/90° configurations are analyzed considering carbon fiber, glass fiber and linoleum fiber reinforcements.

Design/methodology/approach

A free vibration analysis is proposed for different materials, lamination sequences, vibration modes, half-wave numbers and thickness ratios. Such an analysis is conducted by means of an exact three-dimensional shell model which is valid for simply supported structures and cross-ply laminations. The employed model is based on a layer-wise approach and on three-dimensional shell equilibrium equations written in general orthogonal curvilinear coordinates.

Findings

The proposed study confirms the well-known superiority of the carbon fiber-reinforced composites. Linoleum fiber-reinforced composites prove to be comparable to glass fiber-reinforced composites in the case of free vibration analysis. Therefore, similar frequencies are obtained for all the geometries, thickness ratios, laminations sequences, vibration modes and a large spectrum of half-wave numbers. This partial conclusion needs further confirmations via static, buckling and fatigue analyses.

Originality/value

An exact three-dimensional shell model has been used to compare several geometries embedding carbon fiber composites and natural fiber composites.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 4000