Search results

1 – 10 of 754
Article
Publication date: 12 October 2010

S. Ghanbarpour, H. Mazaheripour, S.H. Mirmoradi and A. Barari

Self‐compacting concrete (SCC) offers several economic and technical benefits; the use of steel fibers extends its possibilities. Steel fibers bridge cracks, retard their…

608

Abstract

Purpose

Self‐compacting concrete (SCC) offers several economic and technical benefits; the use of steel fibers extends its possibilities. Steel fibers bridge cracks, retard their propagation, and improve several characteristics and properties of the SCC. The purpose of this paper is to investigate the effects of type and volume fraction of steel fiber on the compressive strength, split tensile strength, flexural strength and modulus of elasticity of steel fiber reinforced self‐compacting concrete (SFRSCC).

Design/methodology/approach

For this purpose, Micro wire and Wave type steel fibers with l/d ratios of 50 were used. Three different fiber volumes were added to concrete mixes at 0.5, 0.75 and 1 per cent by volume of SCC. Six different SFRSCC mixes were prepared. After 28 days of curing, compressive, split and flexural strength and modulus of elasticity were determined.

Findings

It was found that, inclusion of steel fibers significantly affect the split tensile and flexural strength of SCC accordance with type and vf. Besides, mathematical expressions were developed to estimate the flexural, modulus of elasticity and split tensile strength of SFRSCCs regarding of compressive strength.

Originality/value

It was found that inclusion of steel fibers significantly affected the split tensile and flexural strength of SCC accordance with type and f v.

Details

Journal of Engineering, Design and Technology, vol. 8 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 August 2019

Eric Asa, Ahmed Shaker Anna and Edmund Baffoe-Twum

This paper aims to discuss the evaluation of the compressive and splitting tensile strength of concrete mixes containing different proportions of up to 20 per cent glass…

Abstract

Purpose

This paper aims to discuss the evaluation of the compressive and splitting tensile strength of concrete mixes containing different proportions of up to 20 per cent glass aggregate. Portions of sand in concretes with and without admixtures were replaced with measurements of glass aggregates.

Design/methodology/approach

“Glascrete” is a term used for concrete in which crushed glass is used as a substitute for all or part of the aggregates. Glass can be recycled many times without changing its properties, making it an ideal material in concrete. Overall, 144 cubes and 144 cylinders of glascretes were prepared with different admixtures and subjected to compressive and splitting tensile strength test.

Findings

A comparison with a 21-day control mix indicated that glass aggregates are replacing sand in concrete ranging from 5 to 20 per cent by volume, resulting in 3.8-10.6 per cent and 3.9-16.4 per cent fall in compressive and tensile strength, respectively. However, the use of mineral admixture improved the properties of the mixes at 3, 7, 14 and 21 days.

Social implications

Cities worldwide are congested, and even those with the best waste-management system would have issues with waste disposal after the year 2030. Consequently, waste management is a current issue for cities all over the world.

Originality/value

This study aims to evaluate the physical properties of mortar mixes that contain different volumes of waste glass as substitutes for fine aggregate with or without additives. Mineral additives are used to improve the mechanical properties of glascrete mixes in addition to its chemical resistance by absorbing the OH ions responsible for the possible alkali-silica reaction (ASR). It also reduces the adverse effects of mix-dimensional stability. Water-reducing admixtures are used to reduce the impact of the ASR by minimizing the amount of moisture in concrete, in effect decreasing the possible expansion of any produced gel. In this research, compressive and splitting tensile strength of concrete mortar containing waste glass of limited substitutions is evaluated.

Details

Journal of Engineering, Design and Technology , vol. 17 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 20 December 2021

Amit Deb Nath, Md. Ikramul Hoque, Shuvo Dip Datta and Fahim Shahriar

The current study mainly focuses on the effect of varying diameter recycled steel fibers (RSF) on mechanical properties of concrete prepared with 25 and 50% of recycled coarse…

Abstract

Purpose

The current study mainly focuses on the effect of varying diameter recycled steel fibers (RSF) on mechanical properties of concrete prepared with 25 and 50% of recycled coarse aggregate (RCA) as well as 100% natural aggregate (NA). Two types of RSF with 0.84 mm and 1.24 mm diameter having 30 mm length were incorporated into normal and recycled aggregate concrete (RAC).

Design/methodology/approach

The fresh behavior, compressive, splitting tensile, flexural strengths and modulus of elasticity of all the mixes were investigated to evaluate the mechanical properties of RACs. In addition, specimen crack and testing co-relation were analyzed to evaluate fiber response in the RAC.

Findings

According to the experimental results, it was observed that mechanical properties decreased with the increment replacement of NA by RCA. However, the RSF greatly improves the mechanical properties of both normal concrete and RACs. Moreover, mixes containing 1.24 mm diameter RSF had a more significant positive impact on mechanical properties than mixes containing 0.84 mm diameter RSF. The 0.84 mm and 1.24 mm RSF addition improved the mixes' compressive, splitting tensile and flexural strength by 10%–19%, 19%–30% and 3%–11%, respectively when compared to the null fiber mix. Therefore, based on the mechanical properties, the 1.24 mm diameter of RSF with 25% replacement of RCA was obtained as an optimum solution in terms of performance improvement, environmental benefit and economic cost.

Practical implications

The practice of RCA in construction is a long-term strategy for reducing natural resource extraction and the negative ecological impact of waste concrete.

Originality/value

This is the first study on the effects of varying size (0.84 mm and 1.24 mm diameter) RSF on the mechanical properties of RAC. Additionally, varying sizes of RSF and silica fume added a new dimension to the RAC.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 16 November 2021

Wasim Barham, Ammar AL-Maabreh and Omar Latayfeh

The influence of using magnetic water instead of tap water in the mechanical properties of the concrete exposed to elevated temperatures was investigated. Two concrete mixes were…

Abstract

Purpose

The influence of using magnetic water instead of tap water in the mechanical properties of the concrete exposed to elevated temperatures was investigated. Two concrete mixes were used and cast with the same ingredients. Tap water was used in the first mix and magnetic water was used in the second mix. A total of 48 specimens were cast and divided as follows: 16 cylinders for the concrete compressive strength test (8 samples for each mix), 16 cylinders for the splitting tensile strength (8 specimens for each mix) and 16 beams to test the influences of magnetized water on the flexural strength of concrete (8 specimens for each mixture). Specimens were exposed to temperatures of (25 °C, 200 °C, 400 °C and 600 °C). The experimental results showed that magnetic water highly affected the mechanical properties of concrete. Specimens cast and curried out with magnetic water show higher compressive strength, splitting tensile strength and flexural strength compared to normal water specimens at all temperatures. The relative strength range between the two types of water used was 110–123% for compressive strength and 110–133% for splitting strength. For the center point loading test, the relative flexural strength range was 118–140%. The use of magnetic water in mixing concrete contribute to a more complete hydration process.

Design/methodology/approach

Experimental study was carried out on two concrete mixes to investigate the effect of magnetic water. Mix#1 used normal water as the mixing water, and Mix#2 used magnetic water instead of normal water. After 28 days, all the samples were taken out of the tank and left to dry for seven days, then they were divided into different groups. Each group was exposed to a different temperature where it was placed in a large oven for two hours. Three different tests were carried out on the samples, these tests were concrete compressive strength, flexural strength and splitting tensile strength.

Findings

Exposure of concrete to high temperatures had a significant influence on concrete mechanical properties. Specimens prepared using magnetic water showed higher compressive strength at all temperature levels. The use of magnetic water in casting and curing concrete can increase the compressive strength by 23%. Specimens prepared using magnetic water show higher splitting tensile strength at all temperatures up to 33%. The use of magnetic water in casting and curing can strengthen and increase concrete resistance to high temperatures, a significant enhancement in flexural strength at all temperatures was found with a value up to 40%.

Originality/value

Previous research proved the advantages of using magnetic water for improving the mechanical properties of concrete under normal conditions. The potential of using magnetic water in the concrete industry in the future requires conducting extensive research to study the behavior of magnetized concrete under severe conditions to which concrete structures may be subjected to. These days, there are attempts to obtain stronger concrete with high resistance to harsh environmental conditions without adding new costly ingredients to its main mixture. No research has been carried out to investigate the effect of magnetic water on the mechanical properties of concrete exposed to elevated temperature. The main objective of this study is to evaluate the effect of using magnetic water on the mechanical properties of hardened concrete subjected to elevated temperature.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 14 October 2021

Hala Mohamed Elkady, Ola Bakr Shalaby, Mohamed Kohail and Elsayed Abdel Raouf Nasr

This paper presents the second part of the investigation on resistance to elevated temperatures of a proposed hybrid composite concrete (NCSF-Crete) mix. The composite including…

Abstract

Purpose

This paper presents the second part of the investigation on resistance to elevated temperatures of a proposed hybrid composite concrete (NCSF-Crete) mix. The composite including nano metakaolin (NC) and steel fibers (SF) in addition to regular concrete components has proven -in the first published part-earlier promoted fresh concrete behavior, and to have reduced loss in compressive strength after exposure to a wide range of elevated temperatures. This presented work evaluates another two critical mechanical characteristics for the proposed composite -namely- splitting and bond strengths.

Design/methodology/approach

A modified formula correlating splitting and compressive strength (28 days) based on experiments results for NCSF is proposed and compared to formulas derived for regular concrete in different design codes. Finally, both spitting and bond strengths are evaluated pre- and post-exposure to elevated temperatures reaching 600 °C for two hours.

Findings

The proposed NCSF-Crete shows remarkable fire endurance, especially in promoting bond strength as after 600 °C heat exposure tests, it maintained strength equivalent to 70% of a regular concrete control mix at room temperature. Improving residual splitting strength was very significant up to 450 °C exposure.

Research limitations/implications

Obvious deterioration is monitored in splitting resistance for all concretes at 600 °C.

Practical implications

This proposed composite improved elevated heats resistance of the most significant concrete mechanical properties.

Social implications

Using a more green and sustainable constituents in the composite.

Originality/value

The proposed composite gathers the merits of using NC and SF, each has been investigated separately as an addition to concrete mixes.

Details

Journal of Structural Fire Engineering, vol. 13 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 28 October 2022

Rachit Sharma

The purpose of this research is to evaluate construction and industrial waste materials in concrete using different additives.

149

Abstract

Purpose

The purpose of this research is to evaluate construction and industrial waste materials in concrete using different additives.

Design/methodology/approach

The experimental study investigated the effect of waste foundry sand (WFS), waste glass (GW) as partial substituent to natural sand and addition of waste glass fibers (GFs) and silica fume (SF) in natural/construction waste aggregate concrete on mechanical properties, durability and microstructure using.

Findings

The results reveal significant strength enhancement on using two admixtures, the maximum increase in compressive strength was obtained on using 20% WFS and 0.75% GF for both natural (75% increment) and construction waste (72% increment) coarse aggregates. Using three admixtures simultaneously, the maximum enhancement in compressive strength was found for (WFS(20%) + GW(10%) + GF(0.75%)) for both natural aggregates (122% increment) and construction waste (114% increment) coarse aggregates as compared to control mix. The 28 days split tensile and flexural strength of natural/construction waste aggregate concrete improve with age appreciably for optimal contents of single, two or three admixtures and the maximum tensile and flexural strength increment was 135 and 97% for mix (WFS(20%) + GW(10%) + GF(0.75%)) with natural aggregates as compared to control mix. The microstructural analysis results indicate improved microstructure upon partial substitution of sand with WFS, GW and SF along with addition of waste GFs.

Originality/value

The use of construction and industrial waste as a substituent to natural aggregate/sand will provide far reaching benefits for the green construction and the environment at large.

Details

International Journal of Structural Integrity, vol. 13 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 April 2024

Shivendra Singh Rathore and Chakradhara Rao Meesala

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on…

Abstract

Purpose

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on properties of low calcium fly ash (FA)-based geopolymer concrete (GPC) cured at oven temperature. Further, this paper aims to study the effect of partial replacement of FA by ground granulated blast slag (GGBS) in GPC made with both NCA and RCA cured under ambient temperature curing.

Design/methodology/approach

M25 grade of ordinary Portland cement (OPC) concrete was designed according to IS: 10262-2019 with 100% NCA as control concrete. Since no standard guidelines are available in the literature for GPC, the same mix proportion was adopted for the GPC by replacing the OPC with 100% FA and W/C ratio by alkalinity/binder ratio. All FA-based GPC mixes were prepared with 12 M of sodium hydroxide (NaOH) and an alkalinity ratio, i.e. sodium hydroxide to sodium silicate (NaOH:Na2SiO3) of 1:1.5, subjected to 90°C temperature for 48 h of curing. The NCA were replaced with 50% and 100% RCA in both OPC and GPC mixes. Further, FA was partially replaced with 15% GGBS in GPC made with the above percentages of NCA and RCA, and they were given ambient temperature curing with the same molarity of NaOH and alkalinity ratio.

Findings

The workability, compressive strength, split tensile strength, flexural strength, water absorption, density, volume of voids and rebound hammer value of all the mixes were studied. Further, the relationship between compressive strength and other mechanical properties of GPC mixes were established and compared with the well-established relationships available for conventional concrete. From the experimental results, it is found that the compressive strength of GPC under ambient curing condition at 28 days with 100% NCA, 50% RCA and 100% RCA were, respectively, 14.8%, 12.85% and 17.76% higher than those of OPC concrete. Further, it is found that 85% FA and 15% GGBS-based GPC with RCA under ambient curing shown superior performance than OPC concrete and FA-based GPC cured under oven curing.

Research limitations/implications

The scope of the present paper is limited to replace the FA by 15% GGBS. Further, only 50% and 100% RCA are used in place of natural aggregate. However, in future study, the replacement of FA by different amounts of GGBS (20%, 25%, 30% and 35%) may be tried to decide the optimum utilisation of GGBS so that the applications of GPC can be widely used in cast in situ applications, i.e. under ambient curing condition. Further, in the present study, the natural aggregate is replaced with only 50% and 100% RCA in GPC. However, further investigations may be carried out by considering different percentages between 50 and 100 with the optimum compositions of FA and GGBS to enhance the use of RCA in GPC applications. The present study is further limited to only the mechanical properties and a few other properties of GPC. For wider use of GPC under ambient curing conditions, the structural performance of GPC needs to be understood. Therefore, the structural performance of GPC subjected to different loadings under ambient curing with RCA to be investigated in future study.

Originality/value

The replacement percentage of natural aggregate by RCA may be further enhanced to 50% in GPC under ambient curing condition without compromising on the mechanical properties of concrete. This may be a good alternative for OPC and natural aggregate to reduce pollution and leads sustainability in the construction.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 January 2022

N. Suresh, Vadiraj Rao and B.S. Akshay

The purpose of the study is to evaluate the suitability of post-fire curing for normal and Recycled Aggregate Concretes (RAC) with and without fibres.

94

Abstract

Purpose

The purpose of the study is to evaluate the suitability of post-fire curing for normal and Recycled Aggregate Concretes (RAC) with and without fibres.

Design/methodology/approach

The study includes the testing of RAC specimens, i.e. 150 mm cubes and cylinders with 300 mm length and 150 mm diameter with hybrid fibres (0.15% polypropylene fibres + 0.35% steel fibres) along with fly ash. The specimens were exposed to elevated temperatures between 400 to 700°C with 100°C intervals for 2 h of duration and the post-fire exposed samples were further subjected to water curing for a period of 7 days. The compressive strength, split tensile strength and Rebound Hammer Number (RHN) were measured at room temperature, after exposure to elevated temperatures and post-fire curing.

Findings

The result shows that the compressive strength reduces by a maximum of 61.25% for 700°C and maximum retain in strength, i.e. 71.2% (in comparison to specimens kept at room temperature) is observed for 600°C post-fire cured specimens. The split tensile strength reduces by more than half for 500°C and above temperatures, whereas 400°C specimens exhibits a significant regain in strength after post-fire curing. To validate the results of compressive strength, the Rebound Hammer test has been conducted. The RHN value decreases by 41.3% for 700°C specimens and the effectiveness of post-fire curing is observed to be considerable up to 500°C.

Practical implications

The conclusions from the study can be used in assessing the extent of damage and to check the suitability of post-fire curing in further continuing the utilisation of a fire damaged structure.

Social implications

Utilisation of secondary materials like recycled aggregates and fly ash can be made in the production of concrete.

Originality/value

Specimens with fibres performed better when compared to specimens without fibres and post-fire curing is found to be effective up to 500°C.

Details

Journal of Structural Fire Engineering, vol. 13 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 December 2023

Bheem Pratap and Pramod Kumar

To investigate the mechanical properties of geopolymer concrete at elevated temperatures.

Abstract

Purpose

To investigate the mechanical properties of geopolymer concrete at elevated temperatures.

Design/methodology/approach

The investigation involved studying the influence of partially replacing fly ash with ground granulated blast furnace slag (GGBS) at different proportions (5%, 10%, 15%, 20% and 25%) on the composition of the geopolymer. This approach aimed to examine how the addition of GGBS impacts the properties of the geopolymer material. The chemical NaOH was purchased from the local supplier of Jamshedpur. The alkali solution was prepared with a concentration of 12 M NaOH to produce the concrete. After several trials, the alkaline-to-binder ratio was determined to be 0.43.

Findings

The compressive strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 35.42 MPa, 41.26 MPa, 44.79 MPa, 50.51 MPa and 46.33 MPa, respectively. The flexural strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 5.31 MPa, 5.64 MPa, 6.12 MPa, 7.15 MPa and 6.48 MPa, respectively. The split tensile strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 2.82 MPa, 2.95 MPa, 3.14 MPa, 3.52 MPa and 3.31 MPa, respectively.

Originality/value

This approach allows for the examination of how the addition of GGBS affects the properties of the geopolymer material. Four different temperature levels were chosen for analysis: 100 °C, 300 °C, 500 °C and 700 °C. By subjecting the geopolymer samples to these elevated temperatures, the study aimed to observe any changes in their mechanical.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 20 August 2024

Amira A.K. Hachem, Jamal M. Khatib and Mohamad Ezzedine El Dandachy

This paper aims to investigate the bond strength of metakaolin-based geopolymer mortar with cement mortar.

Abstract

Purpose

This paper aims to investigate the bond strength of metakaolin-based geopolymer mortar with cement mortar.

Design/methodology/approach

The mortar-mortar bond strength is assessed by slant shear and split tensile tests; pure shear strength is evaluated by Mohr’s criterion for result validation. Metakaolin-based geopolymer mortar is cast over the cured cement mortar specimen with two levels of surface roughness: smooth or grooved interface. The influence of the alkaline solution to metakaolin ratio on geopolymer bond strength is studied. Compressive strength, ultrasonic pulse velocity, permeability and flow table tests are also performed.

Findings

The paper’s findings are highlighted as follows: (1) strong mortar-mortar bond properties achieved for geopolymer mortar in all tests and conditions and validated by Mohr’s criterion and pure shear, (2) a lower alkaline solution to metakaolin ratio achieves higher bond strength to Portland cement mortar and (3) geopolymer mortar has higher compressive strength and ultrasonic pulse velocity than cement mortar at all curing ages; additionally, it is more flowable and less permeable.

Practical implications

The full replacement of Portland cement with metakaolin, a more sustainable cementitious material, will contribute to the decarbonization of the construction industry.

Originality/value

Limited research has been carried out on the bond strength of metakaolin-based geopolymer mortar to Portland cement mortar. Also, computing the pure shear using Mohr’s circle criterion of metakaolin-based geopolymer to validate the results can be considered original.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

1 – 10 of 754