Search results

1 – 10 of 121
Article
Publication date: 27 September 2021

Joseph Raj Xavier

The purpose of this study is to use polybenzoxazine (Pbz) functionalized ZrO2 nanoparticles to synthesize polyurethane (PU)-PbZ/ZrO2 nanocomposite. The results derived from the…

Abstract

Purpose

The purpose of this study is to use polybenzoxazine (Pbz) functionalized ZrO2 nanoparticles to synthesize polyurethane (PU)-PbZ/ZrO2 nanocomposite. The results derived from the electrochemical impedance spectroscopy (EIS) and polarization studies indicated the superior anticorrosive activity of PU-Pbz/ZrO2 nanocomposite coatings compared to those of plain PU coatings. The decreased corrosion current was detected on the scratch of the PU-Pbz/ZrO2 nanocomposite-coated mild steel surface by scanning electrochemical microscopy (SECM) compared to other studied coatings. The superior anticorrosive and mechanical properties of the proposed nanocomposite coatings provide a new horizon in the development of high-performance anticorrosive coatings for various industries.

Design/methodology/approach

The Pbz functionalized ZrO2 nanoparticles were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) and thermogravimetric analysis (TGA) in terms of the structural, morphological and thermal properties of these coatings. A different formulation of coatings such as PU, PU-Pbz, PU-ZrO2 and PU-Pbz/ZrO2 were prepared and investigated for their corrosion protection performance on mild steel in natural seawater by electrochemical techniques. The surface morphological studies were done by SEM/EDX and XRD analysis.

Findings

The superior anticorrosive property of the proposed nanocomposite coatings provides a new horizon in the development of high-performance anticorrosive coatings for various industries. Addition of Pbz wrapped ZrO2 nanoparticles into the PU coating resulted in the blockage of charge transfer at the metal/electrolyte interface, which reduced the dissolution of mild steel. It was revealed from the SEM/EDX analysis that the formation of the corrosion products at the metal/electrolyte interface behaved as the passive layer which reduced the dissolution of steel.

Originality/value

The inclusion of polybenzoxazine functionalized ZrO2 nanoparticles to the polyurethane coating reinforces the barrier and mechanical properties of PU-Pbz/ZrO2 nanocomposite, which is due to the synergistic effect of ZrO2 and Pbz.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 June 2016

Doğuş Özkan, M. Barış Yağci, Özgür Birer and Hakan Kaleli

This study aims to evaluate and compare by 100 hours engine bench tests the tribological performances of two types of lubrication oils, which were sulfur-based, boron…

Abstract

Purpose

This study aims to evaluate and compare by 100 hours engine bench tests the tribological performances of two types of lubrication oils, which were sulfur-based, boron succinimide-containing antiwear package (NP-3) oil and conventional zinc dialkyldithiophosphate (ZDDP)-containing (R-1) oil.

Design/methodology/approach

The tribological performances of the oils were evaluated in three main contexts, including engine tests, physical/chemical changes and surface analysis.

Findings

Results showed that NP-3 lubrication oil, which was environment- and catalyst-friendly, can be an alternative lubrication oil with its tribological performance due to similar antiwear characteristics with the ZDDP.

Originality/value

Attempts to develop catalysis- and environment-friendly antiwear additive packages have not presented popular or commonly used ZDDP-free products for the vehicle industry. This study presents tribological characterization of a newly developed ZDDP-free lubricating oil by engine bench tests.

Details

Industrial Lubrication and Tribology, vol. 68 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 March 2024

Rıza Atav and Özge Çolakoğlu

The purpose of this study is to determine the effect of laser treatment on disperse dye-uptake and fastness values of polyester fabrics. Furthermore, it was aimed to evaluate…

Abstract

Purpose

The purpose of this study is to determine the effect of laser treatment on disperse dye-uptake and fastness values of polyester fabrics. Furthermore, it was aimed to evaluate colors directly over the photos of fabric samples instead of color measuring with spectrophotometer which is thought to be useful in terms of online digital color assessment.

Design/methodology/approach

In this study, 100% polyester (150 denier) single jersey knitted fabrics (weight: 145 g/m2, course density: 15 loops/cm, wale density: 24 loops/cm) were used in the trials. The effect of laser treatments before and after dyeing on color was investigated. Laser treatments were applied to fabrics at different resolutions (20, 25 and 30 dpi) and pixel times (60, 80 and 100 µs) before dyeing. The power of the laser beam was 210 W and the wavelength was 10.6 µm. In order to determine the effect of laser treatment on polyester; FTIR analysis, SEM-EDX analysis and bursting strength tests were applied to untreated and treated fabric samples.

Findings

It was found that treatments with laser have a significant effect on disperse dye-uptake of polyester fibers, and for this reason laser-treated fabrics were dyed in darker shade. Furthermore, it was determined that the samples treated at 30 dpi started to melt and the fabric was damaged considerably, but the fabrics treated at 20 and 25 dpi were not affected at all. Another result obtained regarding the use of laser technology in polyester fabrics is that if some areas of fabrics are not treated with laser and some other areas are treated with laser at 20 dpi 60 µs and 25 dpi 60 µs, it will be possible to obtain patterns containing three different shades of the same color on the fabric.

Originality/value

When the literature is examined, it is seen that there are various studies on the dyeability and patterning of polyester fabrics with disperse dyes by laser technology. As it is known, today color measurement is done digitally using a spectrophotometer. However, when we look at a photograph on computer screens, the colors we see are defined by RGB (red-green-blue) values, while in the spectrophotometer they are defined by L*a*b* (L*: lightness-darkness, a*: redness-greenness, b*: yellowness-blueness) values. Especially when it is desired to produce various design products by creating patterns with laser technology, it would be more useful to show the color directly to the customer on the computer screen and to be able to speak over the same values on the color. For this reason, in this study, the color measurement of the fabric samples was not made with a spectrophotometer, instead, the RGB values obtained from the photographs of the samples were converted into L*a*b* values with MATLAB and interpreted, that is, a digital color evaluation was made on the photographs. Therefore, it is believed that this study will contribute to the literature.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Abstract

Purpose

This paper aims to numerical and experimental analysis on substrate deformation and plastic strain induced by wire arc additive manufacturing.

Design/methodology/approach

The component has the form of a hollow, rectangular thin wall consisting of 25 deposition layers of SS316L on an SS304 substrate plate. Thermo-mechanical finite element analysis was applied with Goldak’s double-ellipsoidal heat-source model and a non-linear isotropic hardening rule based on von Mises’ yield criterion. The layer deposition was modelled using simplified geometry to minimize overall pre-processing work and computational time.

Findings

A new material modelling of SS316L was obtained from the chemical composition of the evolved component characterized by scanning electron microscope/energy dispersive X-ray and further generated by an advanced material-modelling software JMatPro. In defining heat-transfer coefficients, transient thermometric analysis was first performed in the bead and on the substrate, which was followed by an adjustment of the heat-transfer coefficients to reflect the actual temperature distribution. Based on the adjusted model and boundary conditions, sensitivity analysis was conducted prior to the ultimate simulation of substrate deformation and equivalent plastic strain. Furthermore, this simulation was verified by conducting a series of automated wire + arc additive manufacturing tests using robotic gas Metal arc welding with distortion measured by coordinate-measurement machine and equivalent plastic strain measured by optical three-dimensional-metrology measurements (Gesellschaft für Optische Messtechnik).

Originality/value

It can be concluded that a proper numerical computation using the adjusted model and property-evolved material exhibits a similar trend with acceptable agreement compared to the experiment by yielding an error percentage up to 30% for deformation and up to 21% for equivalent plastic strain at each individual measurement point.

Details

Rapid Prototyping Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 November 2016

Mark Andrew Ashworth and Barrie Dunn

This paper aims to present the results of a 32-year-old laboratory study of whisker growth from tin electrodeposits that was originally undertaken to gain an increased…

Abstract

Purpose

This paper aims to present the results of a 32-year-old laboratory study of whisker growth from tin electrodeposits that was originally undertaken to gain an increased understanding of the phenomenon of tin whisker growth.

Design/methodology/approach

Whisker growth was evaluated using electroplated C-rings (both stressed and un-stressed) that were stored throughout in a desiccator at room temperature. Analysis has recently been undertaken to evaluate whisker growth and intermetallic growth after 32 years of storage. Scanning electron microscopy analysis has been performed to investigate whisker length and, using polished cross-sections, the morphology, thickness and type of intermetallic formation.

Findings

Normal tin-plated deposits on brass and steel with a copper barrier layer nucleated whiskers within five months, and in each case, these grew to lengths between 1 and 4.5 mm. For normal tin electroplated onto brass, a one- or two-month nucleation period was needed before whiskers developed. They reached a maximum length of about 1.5 mm after six months, and little or no further growth occurred during the subsequent 32 years. Very few whiskers grew on the tin-plated steel samples and no intermetallic formation was observed. None of the fused tin plating samples nucleated whiskers during the 32-year period.

Practical implications

Knowledge about vintage whiskers is important to take steps to increase the resiliency of space missions. Similarly, such knowledge is important to engineers engaged in products reaching their nominal end-of-life, but where, for reasons of economy, these products cannot be replaced.

Originality/value

This study represents a unique insight into whisker growth and intermetallic formation over an extremely long time period.

Details

Circuit World, vol. 42 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 19 May 2012

Panayiotis Papandreopoulos, Maria Koui, Dimitrios Yfantis and Theophilos Theophanides

The purpose of this paper is to investigate the surface corrosion products of copper alloys by non‐destructive techniques (NDT) and correlate them with their bulk composition.

Abstract

Purpose

The purpose of this paper is to investigate the surface corrosion products of copper alloys by non‐destructive techniques (NDT) and correlate them with their bulk composition.

Design/methodology/approach

Specimens of copper alloys, whose compositions were close to those of ancient copper‐based artefacts, were left to be corroded in simulated soil solution containing ammoniacal buffering solution of pH =10 in 1:1 ratio, in order to accelerate the corrosion rate. The elemental compositions of the surface corrosion products were determined versus time using X‐Ray Fluorescence Spectroscopy, and the surface morphology by Scanning Electron Microscopy with Energy Dispersive X‐Ray Micro‐detector methods, and the results were compared to the bulk composition, as measured by Atomic Absorption Spectroscopy and Inductively Coupled Plasma Atomic Emission Spectroscopy.

Findings

During the corrosion evolution of the copper alloys in the corrosive solution, transitional phenomena were observed such as an initial decrease of the copper concentration with a simultaneous increase of the concentrations of the secondary alloying metals (Sn, Zn and Pb). After 30‐60 immersion days, the alloy concentrations were stabilised.

Originality/value

The results of this research could contribute to the non‐destructive characterisation of copper‐based ancient artefacts (from which the taking of samples is not allowed).

Article
Publication date: 1 January 1990

M.A. Nasta, G.R. Hill and D. Campbell

The filterable particles found in electronic solder fluxes vary considerably in both concentration and chemistry. Four fluxes from three manufacturers were examined, including…

Abstract

The filterable particles found in electronic solder fluxes vary considerably in both concentration and chemistry. Four fluxes from three manufacturers were examined, including both rosin fluxes and mildly activated resin fluxes. Individual particles were examined by optical light microscopy (OLM) and scanning electron microscopy/energy dispersive X‐ray spectroscopy (SEM/EDX). Finally, an automated SEM/EDX system was used to collect and summarise information about the size and chemistry of a hundred or more particles from each flux. The number of particles per microgram of flux was found to vary by two orders of magnitude (0.004 to 0.4 per μg). The particle diameters ranged from 0.2–20 μm with averages of 1–3 μm. A large fraction of the particles (33–75% by number) were organic substances not soluble in the flux. The bulk of the inorganic particles were composed of sulphates, silicates and metal oxides. Thus, some solder fluxes may be introducing several contaminant particles into each solder contact. These contaminants may affect the quality of the solder joint depending on particle size and composition.

Details

Soldering & Surface Mount Technology, vol. 2 no. 1
Type: Research Article
ISSN: 0954-0911

Open Access
Book part
Publication date: 4 May 2018

Intan Lestari

Purpose – The purpose of this paper to immobilization provides biosorbent particle with density and mechanichal strength, immobilization can save the cost of separating from…

Abstract

Purpose – The purpose of this paper to immobilization provides biosorbent particle with density and mechanichal strength, immobilization can save the cost of separating from biomass, can be regeneration and to increase adsorption capacity for metal ions.

Design/Methodology/Approach – The parameters affecting the adsorption, such as initial metal ion concentration, pH, contact time, and temperature, were studied. The analysis of biosorbent functional group was carried out by Fourier Transform Infrared Spectroscopy, SEM-EDX, for elemental analysis.

Findings – Optimum pH condition for biosorption Cd(II) was pH 5, contact time was 45 min, and initial concentration was 250 mg/L. Biosorbent analysis was characterized using SEM-EDX and FTIR analysis. Kinetics adsorption was studied and analyzed in terms of the pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetics models. The result showed that the biosorption for Cd(II) ion followed the pseudo-second-order kinetic model. Biosorption data of Cd(II) ion at 300°K, 308°K, and 318°K was analyzed with Temkin, Langmuir, and Freundlich isotherms. Biosorption of Cd(II) by durian seed immobilization in alginate according to the Langmuir isotherm equation provided a coefficient correlation of r2 = 0.939 and maximum capacity biosorption of 25.05 mg/g.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Article
Publication date: 28 June 2019

Subramanian Chitra, Ill-Min Chung, Seung-Hyun Kim and Mayakrishnan Prabakaran

The study aims to find new anticorrosive components from a plant source, namely, Pachysandra terminalis Sieb. et Zucc. (P. terminalis), a traditional medicinal shrub predominantly…

Abstract

Purpose

The study aims to find new anticorrosive components from a plant source, namely, Pachysandra terminalis Sieb. et Zucc. (P. terminalis), a traditional medicinal shrub predominantly used by Tujia people.

Design/methodology/approach

Because phenolic components from plants are known for its numerous values in several fields, the corrosion inhibitive ability of P. terminalis extract was analyzed by electrochemical studies (polarization, electrochemical impedance spectroscopy) and surface examination (by scanning electron microscopy [SEM], energy-dispersive X-ray spectroscopy [EDX] and atomic force microscopy [AFM]).

Findings

The examination of total phenolic content (TPC), total flavonoids content (TFC) and individual phenols (UHPLC) showed the presence of 85.21 mg/g (TPC), 25.38 mg/g (TFC), protocatechuic acid (62.10 µg/g), gentisic acid (60.21µg/g), rutin (50.12 µg/g), kaempferol (46.58 µg/g) and p-Coumaric acid (42.35µg/g) . The polarization study shows that the maximum shift is (16 mV), imposing a mixed mode of inhibition, dominantly anodic. The surface morphology studies by SEM, EDX and AFM confirmed the adsorption of phytochemical components on the low carbon steel surface blocking the active sites.

Originality/value

The study unveils the inhibitive nature of P. terminalis, preventing aggressive attack by 0.5 M HCl on low carbon steel. This also exhibits few phenols present in methanolic leaf extract which may be the role player of corrosion inhibition.

Details

Pigment & Resin Technology, vol. 48 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 January 2018

Aisha H. Al-Moubaraki

This paper aims to evaluate the inhibitive potential of borage flowers’ aqueous extract (BFAE), Borago officinalis L., against the corrosion of mild steel in 1.0 M phosphoric acid.

Abstract

Purpose

This paper aims to evaluate the inhibitive potential of borage flowers’ aqueous extract (BFAE), Borago officinalis L., against the corrosion of mild steel in 1.0 M phosphoric acid.

Design/methodology/approach

Evaluation was carried out by chemical hydrogen evolution (HE), mass loss (ML) and electrochemical potentiodynamic polarization (PDP) measurements. SEM-EDX analysis also was used to confirm the existence of the adsorbed film.

Findings

It was found that the inhibition efficiency of BFAE increases with the increase in its concentration, but decreases with the increase in temperature. The potentiodynamic polarization curves indicated that BFAE acts as a mixed-type inhibitor with a predominantly anodic action. The adsorption of BFAE on mild steel surface was found to obey Langmuir and thermodynamic-kinetic adsorption isotherms by forming a thin film on the metal surface. SEM-EDX analysis confirms the corrosion inhibition ability of BFEA in 1.0 M H3PO4 by forming a thin film on mild steel surface. In this study, the inhibitive action of BFAE components is discussed on the basis of the physical adsorption mechanism. The same results were obtained for both the freshly prepared extract and the one that kept in a refrigerator for one year.

Originality/value

This paper indicates that BFAE can act as a good inhibitor for the corrosion of mild steel in 1.0 M H3PO4 even after one year of preparation.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 121