Search results

1 – 10 of over 4000
Article
Publication date: 1 March 2007

K. Kadirgama, K.A. Abou‐El‐Hossein, B. Mohammad and H. Habeeb

The Finite Element Method and Response Surface Method are used to find the effect of milling parameters (Cutting speed, Feedrate and Axial depth) on plastic strain when milling…

Abstract

The Finite Element Method and Response Surface Method are used to find the effect of milling parameters (Cutting speed, Feedrate and Axial depth) on plastic strain when milling Hastelloy C‐22HS. This simulation gain more understanding of the strain distribution in metal cutting. Response surface method (RSM) has been used to minimize the number of simulation. The contour plot from the RSM shows the relationship between variables (cutting speed, feedrate and axial depth) and response (plastic strain ‐ rate).The friction interaction along the tool‐chip interface is modeled with Coulomb friction law.

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 November 2019

Vladimir Kobelev

The purpose of this paper is to develop the method for the calculation of residual stress and enduring deformation of helical springs.

Abstract

Purpose

The purpose of this paper is to develop the method for the calculation of residual stress and enduring deformation of helical springs.

Design/methodology/approach

For helical compression or tension springs, a spring wire is twisted. In the first case, the torsion of the straight bar with the circular cross-section is investigated, and, for derivations, the StVenant’s hypothesis is presumed. Analogously, for the torsion helical springs, the wire is in the state of flexure. In the second case, the bending of the straight bar with the rectangular cross-section is studied and the method is based on Bernoulli’s hypothesis.

Findings

For both cases (compression/tension of torsion helical spring), the closed-form solutions are based on the hyperbolic and on the Ramberg–Osgood material laws.

Research limitations/implications

The method is based on the deformational formulation of plasticity theory and common kinematic hypotheses.

Practical implications

The advantage of the discovered closed-form solutions is their applicability for the calculation of spring length or spring twist angle loss and residual stresses on the wire after the pre-setting process without the necessity of complicated finite-element solutions.

Social implications

The formulas are intended for practical evaluation of necessary parameters for optimal pre-setting processes of compression and torsion helical springs.

Originality/value

Because of the discovery of closed-form solutions and analytical formulas for the pre-setting process, the numerical analysis is not necessary. The analytical solution facilitates the proper evaluation of the plastic flow in torsion, compression and bending springs and improves the manufacturing of industrial components.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 September 2021

Xushan Zhao, Yuanxun Wang, Guilan Wang, Runsheng Li and Haiou Zhang

This paper aims to summarize the influence law of hybrid deposited and micro-rolling (HDMR) technology on the shaping strain and residual stress. And the rolling parameters…

Abstract

Purpose

This paper aims to summarize the influence law of hybrid deposited and micro-rolling (HDMR) technology on the shaping strain and residual stress. And the rolling parameters combination was further optimized to guide the actual production.

Design/methodology/approach

This paper proposed a three-dimensional coupled thermo-mechanical model of the HDMR process. The validated model is used to investigate the influences of rolling parameters on stress and plastic strain (the distance between the energy source and roller [De–r], the rolling compression [cr] and the friction coefficient [fr]). The orthogonal optimization of three factors and three levels was carried out. The influence of rolling parameters on the plastic strain and residual stress is analyzed.

Findings

The simulation results show that HDMR technology can effectively increase the shaping strain of the weld bead and reduce the residual tensile stress on the weld bead surface. Furthermore, the influence of rolling parameters on stress and strain is obtained by orthogonal analysis, and the corresponding optimal combination is proposed. Also, the rolling temperature significantly affects the residual stress, and the rolling reduction has a substantial effect on the plastic deformation.

Research limitations/implications

Owing to the choice of research methods, this paper failed to study microstructure evolution.

Originality/value

This paper provides a reference principle for the optimal selection of rolling parameters in HDMR.

Details

Rapid Prototyping Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 August 2003

Masayoshi Akiyama, Yutaka Neishi, Yoshitaka Adachi and Kenjiro Terada

Observation by optical microscopy and EBSP have made it clear that the trigger for the grain coarsening phenomenon of austenite stainless steel BS304S31 may be the stacking faults…

Abstract

Observation by optical microscopy and EBSP have made it clear that the trigger for the grain coarsening phenomenon of austenite stainless steel BS304S31 may be the stacking faults concentrating selectively in a thin layer lying just beneath the grain boundary. When macroscopic plastic strain reached 6 percent, selective concentration of stacking faults was observed. When it reached 20 percent, the distribution of stacking faults became uniform in each grain. After these specimens were heated, concentration of stacking faults disappeared, and grain coarsening occurred at the point with 6 percent strain, but no grain coarsening occurred at the point with 20 percent strain. In order to investigate this concentration of stacking faults, an attempt was made to analyze the deformation in each crystal by using image‐based FEM. The result suggested that there is a possibility that plastic strain concentrates in the vicinity of the grain boundary when the macroscopic plastic strain is small.

Details

Engineering Computations, vol. 20 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1997

Wenhua Ling and Henryk K. Stolarski

Some frictional contact problems are characterized by significant variations in the location and size of the contact area occurring in the process of deformation. When this…

Abstract

Some frictional contact problems are characterized by significant variations in the location and size of the contact area occurring in the process of deformation. When this feature is combined with strongly non‐linear, path‐dependent material behaviour, difficulties with convergence of the typically used iterative processes can be encountered. Demonstrates this by analysis of press‐fit connection, a typical problem in which both of those characteristics can be present. Offers an explanation as to the possible source of those difficulties. Suggests in support of this explanation, two simple modifications of the usual iterative schemes. In spite of their simplicity, they are found to be more robust than those usual schemes which are normally used in numerical analysis of similar problems.

Details

Engineering Computations, vol. 14 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1443

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 September 2014

Asghar Zajkani, Abolfazl Darvizeh and Mansour Darvizeh

The purpose of this paper is to introduce a computational time dependent modeling to investigate propagation of elastic-viscoplastic zones in the shock wave loaded circular…

Abstract

Purpose

The purpose of this paper is to introduce a computational time dependent modeling to investigate propagation of elastic-viscoplastic zones in the shock wave loaded circular plates.

Design/methodology/approach

Constitutive equations are implemented incrementally by the Von-Kármán finite deflection system which is coupled with a mixed strain hardening rule and physical-base viscoplastic models. Time integrations of the equations are done by the return mapping technique through the cutting-plane algorithm. An integrated solution is established by pseudo-spectral collocation methodology. The Chebyshev basis functions are utilized to evaluate the coefficients of displacement fields. Temporal terms are discretized by the Houbolt marching method. Spatial linearizations are accomplished by the quadratic extrapolation technique.

Findings

Results of the center point deflections, effective plastic strain and stress (dynamic flow stress) and temperature rise are compared for three features of the Von-Kármán system. Identifying time history of resultant stresses, propagations of the viscoplastic plastic zones are illustrated for two circumstances; with considering strain rate and hardening effects, and without them. Some of modeling and computation aspects are discussed, carefully. When the results are compared with experimental data of shock wave loadings and finite element simulations, good agreements between them are observed.

Originality/value

This computational approach makes coupling the structural equations with the physical descriptions of the high rate deformation through step-by-step spectral solution of the constitutive equations.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 December 2020

Nagendra Kumar Maurya, Vikas Rastogi and Pushpendra Singh

Nowadays, the PolyJet technique is used to fabricate low volume functional parts in engineering and biomedical applications. However, the mechanical properties of the components…

156

Abstract

Purpose

Nowadays, the PolyJet technique is used to fabricate low volume functional parts in engineering and biomedical applications. However, the mechanical properties of the components fabricated through this process are inferior in comparison to components fabricated through the traditional manufacturing process. This paper aims to attempt to investigate the influence of process parameters, i.e. raster angle, orientation and type of surface finish on mechanical properties of RGD840 material manufactured by the PolyJet process.

Design/methodology/approach

Initially, this study focuses on experimental evaluation of elastic modulus, ultimate tensile strength and percentage elongation of the material. Further detailed experimental study of true stress, true strain, and plastic strain are conducted. Computational analysis of plastic strain is performed by using finite element analysis (FEA) software ABAQUS. The value of strength coefficient (K) and strain hardening coefficient (n) is calculated by using the graphical method from the true stress-plastic strain curve.

Findings

It is observed that 90º raster angle, flat orientation and glossy surface are the best level of process parameters for the tensile strength, true stress and modules of elasticity of the RGD840 material and the obtained value are 27.88, 30.134 and 2891.5 MPa, respectively. The percentage elongation is maximum at 60º raster angle, flat orientation, and matte finish type and the obtained value is 23.38%. The optimum level of process parameters are 90° raster angle, Flat orientation, with Glossy surface finish. SEM analysis of the fracture surface of the tensile test specimen proves that the fracture surface is brittle in nature.

Originality/value

The novelty of this work lies in the fact that no attempts were made to investigate the computational investigation of mechanical properties of RGD840 material.

Details

Rapid Prototyping Journal, vol. 27 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 1990

D.E. Riemer

A method for the prediction of solder joint cycle life in surface‐mount assemblies is presented, based on the conversion of plastic solder shear strain into cycle life by means of…

Abstract

A method for the prediction of solder joint cycle life in surface‐mount assemblies is presented, based on the conversion of plastic solder shear strain into cycle life by means of an equation derived by Engelmaier. The paper introduces a different analytical procedure for the determination of solder joint shear strain. Shear strain is normally calculated from temperature and TCE differentials between package and interconnect board without consideration of elastic deformations. The suggested method derives average plastic shear strain of the solder joint at maximum temperature excursion from finite‐element analysis of a simple model consisting of an interconnect board, a solder joint and a package. All materials in the model have linear (elastic) properties, except solder which has non‐linear (elastic/plastic) characteristics. The solder stress/strain curve is described to the finite‐element programme with temperature‐dependent bilinear approximations. The solder joint is modelled as a single finite element so that only one value is computed for the plastic shear strain in the solder joint. This value represents the average shear strain which is converted into solder joint cycle life. The cycle life predictions with the finite‐element method are confirmed by cycling results obtained on actual hardware. The described method can serve as a design tool in the optimisation of surface‐mount assemblies. The procedure can help to define accelerated temperature cycling conditions.

Details

Soldering & Surface Mount Technology, vol. 2 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 17 October 2023

Yaobing Wei, Yanan Li, Jianhui Liu, Gai Wang, Yanlei Guo and Xuemei Pan

In practical engineering, oil filters often work under asymmetric cyclic loading. In order to improve the prediction accuracy of fatigue life of the oil filters under asymmetric…

Abstract

Purpose

In practical engineering, oil filters often work under asymmetric cyclic loading. In order to improve the prediction accuracy of fatigue life of the oil filters under asymmetric cyclic loading, the effect of strain ratio and low cycle fatigue plastic deformation on fatigue life need to be considered. This paper aims to discuss the aforementioned objective.

Design/methodology/approach

First, strain-controlled fatigue tests with strain ratios of 0, 0.5 and −1 were carried out on the oil filter material 2A70-T6 aluminum alloy, and the test data were used to obtain strain fatigue life curves at three strain ratios. Then, based on the idea of the constant life curve method, the average value of the ratio of the strain amplitude corresponding to different strain ratios under the same partial life was defined as the strain ratio factor. Finally, the elastic-plastic factor was modified by the strain ratio factor, and a new fatigue life prediction model considering the effect of strain ratio was proposed.

Findings

The proposed model was validated, respectively, by fatigue test data of 2A70-T6 aluminum alloy, 2124-T851 aluminum alloy and oil filter and the results of the proposed model were compared with the Coffin–Manson equation, Morrow model and Smith–Watson–Topper (SWT) model, showing that the proposed model had higher applicability and accuracy.

Originality/value

In this work, a strain ratio factor is established based on the idea of the constant life curve method, and the strain ratio factor is used to modify the introduced elastic-plastic factor, and then a new fatigue life prediction model considering the influence of strain ratio and low cycle fatigue plastic deformation on material fatigue damage accumulation is proposed. The results show that the prediction results of the proposed model are in good agreement with the experimental data, and the proposed model has good fatigue life prediction ability considering the influence of strain ratio and lays a foundation for the fatigue life prediction of the oil filter.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 4000