Search results

1 – 10 of over 2000
Article
Publication date: 25 June 2019

D.K. Kharbanda, N. Suri and P.K. Khanna

The purpose of this paper is to explore a new possibility of providing high-temperature stable lead-free interconnections for low-temperature co-fired ceramics (LTCC) hotplate…

108

Abstract

Purpose

The purpose of this paper is to explore a new possibility of providing high-temperature stable lead-free interconnections for low-temperature co-fired ceramics (LTCC) hotplate. For gas-sensing application, a temperature range of 200°C-400°C is usually required by the sensing film to detect different gases which imply the requirement of thermally stable interconnects. To observe the effect of parameters influencing power of the device, electro-thermal simulation of LTCC hotplate is also presented. Simulated LTCC hotplate is fabricated using the LTCC technology.

Design/methodology/approach

The proposed task is to fabricate LTCC hotplate with interconnects through vertical access. Dedicated via-holes generated on the LTCC hotplate are used to provide the interconnections. These interconnections are based on adherence and bonding mechanism between LTCC and thick film. COMSOL software is used for finite element method (FEM) simulation of the LTCC hotplate structure.

Findings

Thermal reliability of these interconnections is tested by continuous operation of hotplate at 350°C for 175 h and cycling durability test performed at 500°C. Additionally, vibration test is also carried out for the hotplate with no damage observed in the interconnections. An optimized firing profile to reproduce these interconnections along with the experimental flowchart is presented.

Research limitations/implications

Research activity includes design and fabrication of LTCC hotplate with metal to thick-film based interconnections through vertical access. Research work on interconnections based on adherence of LTCC and thick film is limited.

Practical implications

A new way of providing lead-free and reliable interconnections will be useful for gas sensor fabricated on LTCC substrate. The FEM results are useful for optimizing the design for developing low-power LTCC hotplate.

Originality/value

Adherence and bonding mechanism between LTCC and thick film can be used to provide interconnections for LTCC devices. Methodology for providing such interconnections is discussed.

Details

Soldering & Surface Mount Technology, vol. 32 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 23 December 2019

Lokesh Kulhari, Achu Chandran, Kanad Ray and P.K. Khanna

Low temperature co-fired ceramics (LTCC) technology-based micro-hotplates are of immense interest owing to their ruggedness, high temperature stability and reliability. The…

Abstract

Purpose

Low temperature co-fired ceramics (LTCC) technology-based micro-hotplates are of immense interest owing to their ruggedness, high temperature stability and reliability. The purpose of this paper is to study the role of thermal mass of LTCC-based micro-hotplates on the power consumption and temperature for gas-sensing applications.

Design/methodology/approach

The LTCC micro-hotplates with different thicknesses are designed and fabricated. The role of thermal mass on power consumption and temperature of these hotplates are simulated and experimentally studied. Also, a comparison study on the performance of LTCC and alumina-based hotplates of equivalent thickness is done. A thick film-sensing layer of tin oxide is coated on LTCC micro-hotplate and demonstrated for the sensing of commercial liquefied petroleum gas.

Findings

It is found from both simulation and experimental studies that the power consumption of LTCC hotplates was decreasing with the decrease in thermal mass to attain the same temperature. Also, the LTCC hotplates are less power-consuming than alumina-based one, owing to their superior thermal characteristics (low thermal conductivity, 3.3 W/ [m-K]).

Originality/value

This study will be beneficial for designing hotplates based on LTCC technology with low power consumption and better stability for gas-sensing applications.

Details

Microelectronics International, vol. 37 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 18 January 2018

Duguta Suresh Kumar, Nikhil Suri and P.K. Khanna

The purpose of this work is to explore the forms of intermetallic phase compounds (IMPCs) in Pt/In/Au and Pt/In/Ag joints by using isothermal solidification. This lead-free…

Abstract

Purpose

The purpose of this work is to explore the forms of intermetallic phase compounds (IMPCs) in Pt/In/Au and Pt/In/Ag joints by using isothermal solidification. This lead-free technique leads to formation of IMPCs having high-temperature stable joints for platinum-based micro-heater gas sensor fabricated on low temperature co-fired ceramic (LTCC) substrate.

Design/methodology/approach

Proposed task is to make an interconnection for Pt micro-heater electrode pad to the silver and gold thick-films printed on LTCC substrate. Both Pt/In/Au and Pt/In/Ag configured joints with different interactive areas prepared at 190 and 220°C to study temperature and contact surface area effects on ultimate tensile strength of the joints, for a 20 s reaction time, at 0.2 MPa applied pressure. Those delaminated joint interfaces studied under SEM, EDAX and XRD.

Findings

IMPCs identified through material analysis using diffraction analysis of XRD data are InPt3, AgIn2, AgPt, AgPt3, Au9In4 and other stoichiometric compounds. The interactive surface area between thick-films and temperature increment shows improvement in the formations of IMPCs and mechanical stability of joints. These IMPCs-based joints have improved the mechanical stability to the joints to sustain even at high operating temperatures. Elemental mapping of the weak joint contact interface shows unwanted oxide formations also reported. Physical inter-locking followed by the diffusion phenomenon on the silver substrate strengthen the interconnection has been noticed.

Research limitations/implications

Inert gas environment creation inside the chamber to isolate the lead-free joint placed between heating stamp pads to avoid oxide formations at the interface while cooling which adds up to the cost of manufacturing. Most of the oxides at a joint-interface increase minute to moderate resistance with respect to the level of oxides took place. These oxides contributed heat certainly damage the micro-heater based gas sensors while functioning.

Practical implications

These isothermal solidification-based lead-free solder joints formation replace the existing lead-based packaging techniques. These lead-free interconnections on ceramic or LTCC substrate are reliable and durable, especially those designed to work for heavy-duty engines, even at severe environment conditions.

Originality/value

Platinum micro-heater-based gas sensors handles over a wide-range of temperatures about 300 to 500°C. The specific temperature level of different oxide films (SnO2) on the micro-heater is capable of detecting various specific gases. This feature of platinum based gas sensor demands durable and mechanically stable joints for continuous monitoring.

Article
Publication date: 1 August 1999

P.K. Khanna, S.K. Bhatnagar and W. Gust

A critical analysis of packaging and sealing methods for integrated circuits, hybrid microcircuits and multichip modules has been done. The best hermetic and high yield weld seal…

1125

Abstract

A critical analysis of packaging and sealing methods for integrated circuits, hybrid microcircuits and multichip modules has been done. The best hermetic and high yield weld seal is examined along with other conventional seals like solder seal, frit seal and plastic seal with special emphasis on materials and processes involved in each case. An overview of emerging technology is also presented. A comparative analysis is made for selection of the right technology and material for a particular requirement.

Details

Microelectronics International, vol. 16 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 January 1991

H. Binner, M.S. Setty, P. Collander and C.H. Garnett

A recent meeting involved co‐operation with the organisers of the Canadian High Technology Show and the local Chapter of the SMTA. The programme included an inspiring keynote…

Abstract

A recent meeting involved co‐operation with the organisers of the Canadian High Technology Show and the local Chapter of the SMTA. The programme included an inspiring keynote address by Mr Frank J. Pipp, Xerox Corporation. The topic of the address was ‘Malcolm Baldridge National Quality Control and the Evaluation of Total Quality Control in Xerox Corporation.’

Details

Microelectronics International, vol. 8 no. 1
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 31 July 2007

Winco K.C. Yung and Jijun Zhu

Low temperature co‐fired ceramics (LTCC) material is introduced as an excellent alternative to silicon, glass, or plastic materials for the fabrication of miniaturised analytical…

Abstract

Purpose

Low temperature co‐fired ceramics (LTCC) material is introduced as an excellent alternative to silicon, glass, or plastic materials for the fabrication of miniaturised analytical devices, though it is most widely used in the automotive and microwave industries. The paper aims to study the laser ablation of LTCC material.

Design/methodology/approach

This kind of green tape material is mechanised by excimer laser (KrF, 248 nm) and UV laser (Nd: YAG, 355 nm), and for the first time by infra‐red laser (1,090 nm). The optical photos and the scanning electronic microscope (SEM) photos of the LTCC ablated by different kinds of laser sources are given in this paper.

Findings

When using the UV laser, the tapered structure can be easily seen from the SEM photo. However, a kind of clear and perfect ablation of LTCC can be seen for the first time by the 1,090 nm infra‐red laser ablation.

Originality/value

The laser ablation of LTCC by optical fibre sources is discussed.

Details

Microelectronics International, vol. 24 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 29 July 2022

Khaled Mostafa, Mohamed Ramadan and Azza El-Sanabary

This study aims to address a comprehensive and integrated investigations pertaining to the preparation of AgNPs with well-defined nano-sized scale using the aforementioned poly…

Abstract

Purpose

This study aims to address a comprehensive and integrated investigations pertaining to the preparation of AgNPs with well-defined nano-sized scale using the aforementioned poly (meth acrylic acid [MAA])–chitosan graft copolymer, which is cheap, nontoxic, biodegradable and biocompatible agent as a substitute for the traditionally used toxic reducing agents.

Design/methodology/approach

AgNPs are prepared under a range of conditions, containing silver nitrate and poly (MAA)–chitosan graft copolymer concentrations, time, temperature and pH of the preparation medium. To classify AgNPs obtained under the various conditions, ultraviolet–visible spectroscopy spectra and transmission electron microscopy images are used for characterization of AgNPs instrumentally in addition to the visual color change throughout the work. The work was further extended to study the application of the so prepared AgNPs on cotton fabric to see their suitability as antibacterial agent as well as their durability after certain washing cycles.

Findings

According to the current investigation, the optimal conditions for AgNPs formation of nearly 3–15 nm in size are 5 g/l, poly (MAA)–chitosan graft copolymer and 300 ppm AgNO3 in addition to carrying out the reaction at 60°C for 30 min at pH 12. Besides, the application of the so prepared AgNPs on cotton fabric displayed a substantial reduction in antibacterial efficiency against gram-positive and gram-negative bacteria estimated even after 10 washing cycles in comparison with untreated one.

Originality/value

To the best of the authors’ information, no comprehensive study of the synthesis of AgNPs using poly (MAA)–chitosan graft copolymer with a graft yield of 48% has been identified in the literature.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 10 August 2012

Juozas Padgurskas, Igoris Prosyčevas, Raimundas Rukuiža, Raimondas Kreivaitis and Artūras Kupčinskas

The purpose of this paper is to investigate the possibility of using the iron nanoparticles and iron nanoparticles coated with copper layer as additives to base oils.

Abstract

Purpose

The purpose of this paper is to investigate the possibility of using the iron nanoparticles and iron nanoparticles coated with copper layer as additives to base oils.

Design/methodology/approach

Fe and Fe+Cu nanoparticles were synthesized by a reduction modification method and added to mineral oil. The size and structure of prepared nanoparticles were characterized by SEM, TEM, XRF, AAS and XRD analysis. Tribological properties of modified lubricants were evaluated on a four‐ball machine in a model of sliding friction pairs.

Findings

Spectral and microscopy analysis evidently displayed the formation of Fe and Fe+Cu nanoparticles in suspensions of colloidal solutions and oil. The size of formed nanoparticles was in 15‐50 nm range. Tribological experiments show good lubricating properties of oils modified with Fe and Fe+Cu nanoparticles: higher wear resistance (55 per cent and 46 per cent accordingly) and lower friction coefficient (30 per cent and 26 per cent accordingly). The tests show that nanoparticles provide decreasing tendency of friction torque during the operation of friction pair.

Originality/value

The paper demonstrates that iron nanoparticles and iron nanoparticles coated with copper layer, not only reduce the wear and friction decrease of friction pairs, but possibly also can create layer in oil which separates two friction surfaces and have some self‐organisation properties.

Details

Industrial Lubrication and Tribology, vol. 64 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 April 2017

A. Krishnakumar, Revathy Das and Saranya Puthalath

The purpose of this paper is to assess the ground water quality and salinity issues in the fast developing coastal urban lands of two river basins of Thiruvananthapuram district…

Abstract

Purpose

The purpose of this paper is to assess the ground water quality and salinity issues in the fast developing coastal urban lands of two river basins of Thiruvananthapuram district, Kerala, South India.

Design/methodology/approach

In order to address the water quality of the basins, field sampling was conducted and the samples were analysed in the laboratory. A comparison with water quality standards was also made and the interpretations of the results were done using GIS and statistical tools.

Findings

The values of conductivity, chlorides and salinity show that the coastal areas of Neyyar and Karamana basins are severely affected by salinity intrusion in addition to the pollution problems. More than 90 per cent of the samples are with hardness lower than 100 mg/l. About 70 per cent of the study area is with calcium concentrations lower than 25 mg/l. The content of sulphate and magnesium in Poovar and Poonthura coastal stretches is found to be higher compared to other regions.

Originality/value

Since not much work has been published from the study area on these aspects, the hydrochemical characterization is a very important in deciphering the quality of ground water for its proper management. The water quality evaluation and salinity intrusion studies are very important for the future planning and development of this area.

Details

Management of Environmental Quality: An International Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 1 January 2004

Marianne Francois, Eray Uzgoren, Jelliffe Jackson and Wei Shyy

Multiphase flow computations involve coupled momentum, mass and energy transfer between moving and irregularly shaped boundaries, large property jumps between materials, and…

Abstract

Multiphase flow computations involve coupled momentum, mass and energy transfer between moving and irregularly shaped boundaries, large property jumps between materials, and computational stiffness. In this study, we focus on the immersed boundary technique, which is a combined Eulerian‐Lagrangian method, to investigate the performance improvement using the multigrid technique in the context of the projection method. The main emphasis is on the interplay between the multigrid computation and the effect of the density and viscosity ratios between phases. Two problems, namely, a rising bubble in a liquid medium and impact dynamics between a liquid drop and a solid surface are adopted. As the density ratio increases, the single grid computation becomes substantially more time‐consuming; with the present problems, an increase of factor 10 in density ratio results in approximately a three‐fold increase in CPU time. Overall, the multigrid technique speeds up the computation and furthermore, the impact of the density ratio on the CPU time required is substantially reduced. On the other hand, the impact of the viscosity ratio does not play a major role on the convergence rates.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 14 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Year

All dates (2374)

Content type

Article (2374)
1 – 10 of over 2000