Search results

1 – 10 of over 1000
Article
Publication date: 21 December 2017

Izhan Abdullah, Muhammad Nubli Zulkifli, Azman Jalar and R. Ismail

The relationship between the bulk and localized mechanical properties is critically needed, especially to understand the mechanical performance of solder alloy because of smaller…

Abstract

Purpose

The relationship between the bulk and localized mechanical properties is critically needed, especially to understand the mechanical performance of solder alloy because of smaller sizing trend of solder joint. The purpose of this paper is to investigate the relationship between tensile and nanoindentation tests toward the mechanical properties and deformation behavior of Sn-3.0Ag-0.5Cu (SAC305) lead-free solder wire at room temperature.

Design/methodology/approach

Tensile test with different strain rates of 1.5 × 10-4 s-1, 1.5 × 10-3 s-1, 1.5 × 10-2 s-1 and 1.5 × 10-1 s-1 at room temperature of 25°C were carried out on lead-free Sn-3.0Ag-0.5Cu (SAC305) solder wire. Stress–strain curves and mechanical properties such as yield strength (YS), ultimate tensile strength (UTS) and elongation were determined from the tensile test. Load-depth (P-h) profiles and micromechanical properties, namely, hardness and reduced modulus, were obtained from nanoindentation test. In addition, the deformation mechanisms of SAC305 lead-free solder wire were obtained by measuring the range of creep parameters, namely, stress exponent and strain rate sensitivity, using both of tensile and nanoindentation data.

Findings

It was observed that qualitative results obtained from tensile and nanoindentation tests can be used to identify the changes of the microstructure. The occurrence of dynamic recrystallization and the increase of ductility obtained from tensile test can be used to indicate the increment of grain refinement or dislocation density. Similarly, the occurrence of earliest pop-in event and the highest occurrence of pop-in event observed from nanoindentation also can be used to identify the increase of grain refinement and dislocation density. An increment of strain rates increases the YS and ultimate UTS of SAC305 solder wire. Similarly, the variation of hardness of SAC305 solder wire has the similar trend or linear relationship with the variation of YS and UTS, following the Tabor relation. In contrast, the variation of reduced modulus has a different trend compared to that of hardness. The deformation behavior analysis based on the Holomon’s relation for tensile test and constant load method for nanoindentation test showed the same trend but with different deformation mechanisms. The transition of responsible deformation mechanism was obtained from both tensile and nanoindentation tests which from grain boundary sliding (GBS) to grain boundary diffusion and dislocation climb to grain boundary slide, respectively.

Originality/value

For the current analysis, the relationship between tensile and nanoindentation test was analyzed specifically for the SAC305 lead-free solder wire, which is still lacking. The findings provide a valuable data, especially when comparing the trend and mechanism involved in bulk (tensile) and localized (nanoindentation) methods of testing.

Details

Soldering & Surface Mount Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 22 July 2022

Shafahat Ali, Said Abdallah, Deepak H. Devjani, Joel S. John, Wael A. Samad and Salman Pervaiz

This paper aims to investigate the effects of build parameters and strain rate on the mechanical properties of three-dimensional (3D) printed polylactic acid (PLA) by integrating…

Abstract

Purpose

This paper aims to investigate the effects of build parameters and strain rate on the mechanical properties of three-dimensional (3D) printed polylactic acid (PLA) by integrating digital image correlation and desirability function analysis. The build parameters included in this paper are the infill density, build orientation and layer height. These findings provide a framework for systematic mechanical characterization of 3D-printed PLA and potential ways of choosing process parameters to maximize performance for a given design.

Design/methodology/approach

The Taguchi method was used to shortlist a set of 18 different combinations of build parameters and testing conditions. Accordingly, 18 specimens were 3D printed using those combinations and put through a series of uniaxial tensions tests with digital image correlation. The mechanical properties deduced for all 18 tests were then used in a desirability function analysis where the mechanical properties were optimized to determine the ideal combination of build parameters and strain rate loading conditions.

Findings

By comparing the tensile mechanical experimental properties results between Taguchi's recommended parameters and the optimal parameter found from the response table of means, the composite desirability had increased by 2.08%. The tensile mechanical properties of the PLA specimens gradually decrease with an increase in the layer height, while they increase with increasing the infill densities. On the other hand, the mechanical properties have been affected by the build orientation and the strain rate in similar increasing/decreasing trends. Additionally, the obtained optimized results suggest that changing the infill density has a notable impact on the overall result, with a contribution of 48.61%. DIC patterns on the upright samples revealed bimodal strain patterns rendering them more susceptible to failures because of printing imperfections.

Originality/value

These findings provide a framework for systematic mechanical characterization of 3D-printed PLA and potential ways of choosing process parameters to maximize performance for a given design.

Details

Rapid Prototyping Journal, vol. 29 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 August 2022

Wafa' AlAlaween, Omar Abueed, Belal Gharaibeh, Abdallah Alalawin, Mahdi Mahfouf, Ahmad Alsoussi and Nibal Albashabsheh

The purpose of this research paper is to investigate and model the fused deposition modelling (FDM) process to predict the mechanical attributes of 3D printed specimens.

Abstract

Purpose

The purpose of this research paper is to investigate and model the fused deposition modelling (FDM) process to predict the mechanical attributes of 3D printed specimens.

Design/methodology/approach

By exploiting the main effect plots, a Taguchi L18 orthogonal array is used to investigate the effects of such parameters on three mechanical attributes of the 3D printed specimens. A radial-based integrated network is then developed to map the eight FDM parameters to the three mechanical attributes for both PEEK and PEKK. Such an integrated network maps and predicts the mechanical attributes through two consecutive phases that consist of several radial basis functions (RBFs).

Findings

Validated on a set of further experiments, the integrated network was successful in predicting the mechanical attributes of the 3D printed specimens. It also outperformed the well-known RBF network with an overall improvement of 24% in the coefficient of determination. The integrated network is also further validated by predicting the mechanical attributes of a medical-surgical implant (i.e. the MidFace Rim) as an application.

Originality/value

The main aim of this paper is to accurately predict the mechanical properties of parts produced using the FDM process. Such an aim requires modelling a highly dimensional space to represent highly nonlinear relationships. Therefore, a radial-based integrated network based on the combination of composition and superposition of radial functions is developed to model FDM using a limited number of data points.

Details

Rapid Prototyping Journal, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 October 2017

Hao Li, Shuai Zhang, Zhiran Yi, Jie Li, Aihua Sun, Jianjun Guo and Gaojie Xu

This work aims to evaluate the influence of rheological properties of building materials on the bonding quality and ultimate tensile strength in the fused deposition modeling…

1010

Abstract

Purpose

This work aims to evaluate the influence of rheological properties of building materials on the bonding quality and ultimate tensile strength in the fused deposition modeling (FDM) process, through the investigation of parts printed by semi-crystalline and amorphous resins. Little information is currently available about the influence of the crystalline nature on FDM-printed part quality.

Design/methodology/approach

Semi-crystalline polyamide 12 and amorphous acrylonitrile butadiene styrene (ABS) were used to assess the influence of rheological properties on bonding quality and the tensile strength, by varying three important process parameters: materials, liquefier temperature and raster orientation. A fractography of both tensile and freeze-fractured samples was also investigated.

Findings

The rheological properties, mainly the melt viscosity, were found to have a significant influence on the bonding quality of fused filaments. Better bonding quality and higher tensile strength of FDM parts printed with semi-crystalline PA12, as compared with amorphous ABS, are suggested to be a result of higher initial sintering rates owing to the lower melt viscosity of PA12 at low shear rates. Near-full dense PA12 parts were obtained by FDM.

Originality/value

This project provides a variety of data and insight regarding the effect of materials properties on the mechanical performance of FDM-printed parts. The results showed that FDM technique allows the production of PA12 parts with adequate mechanical performance, overcoming the greatest limitation of a dependence on amorphous thermoplastics as a feedstock for the production of prototypes.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 April 2020

Saleh Ahmed Aldahash and Abdelrasoul M. Gadelmoula

The cement-filled PA12 manufactured by selective laser sintering (SLS) offers desirable mechanical properties; however, these properties are dependent on several fabrication…

Abstract

Purpose

The cement-filled PA12 manufactured by selective laser sintering (SLS) offers desirable mechanical properties; however, these properties are dependent on several fabrication parameters. As a result, SLS prototypes may exhibit orthotropic mechanical properties unless properly oriented in build chamber. This paper aims to evaluate the effects of part build orientation, laser energy and cement content on mechanical properties of cement-filled PA12.

Design/methodology/approach

The test specimens were fabricated by SLS using the “DTM Sinterstation 2000” system at which the specimens were aligned along six different orientations. The scanning speed was 914mm/s, scan spacing was 0.15mm, layer thickness was 0.1mm and laser power was 4.5–8Watt. A total of 270 tensile specimens, 270 flexural specimens and 135 compression specimens were manufactured and the tensile, compression and flexural properties of fabricated specimens were evaluated.

Findings

The experiments revealed orientation-dependent (orthotropic) mechanical properties of SLS cement-filled PA12 and confirmed that the parts with shorter scan vectors have enhanced flexural strength as compared with longer scan vectors. The maximum deviations of ultimate tensile strength, compressive strength and flexural modulus along the six orientations were 32%, 26% and 36%, respectively.

Originality/value

Although part build orientation is a key fabrication parameter, very little was found in open literature with contradictory findings about its effect on mechanical properties of fabricated parts. In this work, the effects of build orientation when combined with other fabrication parameters on the properties of SLS parts were evaluated along six different orientations.

Article
Publication date: 21 May 2020

Ch. Mohana Rao and K. Mallikarjuna Rao

The objective of the paper is to evaluate the fabrication process and to study the influence of process parameters of friction stir processing of 6061-TiB2-Al2O3 Aluminum alloy…

Abstract

Purpose

The objective of the paper is to evaluate the fabrication process and to study the influence of process parameters of friction stir processing of 6061-TiB2-Al2O3 Aluminum alloy surface composite on microhardness tensile strength, and microstructure.

Design/methodology/approach

Friction stir processing method is used for attaining the desired mechanical properties, and selectively processed reinforcements to fabricate the samples. The Taguchi technique was used to optimize rotational speed, travel speed and volume percentage of reinforcement particles to enhance the mechanical properties of 6061-TiB2-Al2O3 Aluminum alloy composite.

Findings

The fabrication of surface composites through FSP allows new inventions in terms of material with enhanced surface layers without changing the base metal.

Practical implications

To examine the behavior of the surface of the composites in the different zones, the practical implication consists of the use of different characterization techniques like optical microscopy and scanning microscopy for microstructural behavior and the measurement of hardness and tensile tests for mechanical behavior.

Originality/value

The research work consists of tool design and process parameters, which can affect the final product (microstructural changes), and the performance of the modified surface layer behavior was studied and presented.

Details

International Journal of Structural Integrity, vol. 12 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 December 2019

Norashidah Abd Rahman, Siti Amirah Azra Khairuddin, Mohd Faris Faudzi, Mohd Harith Imran Mohd Asri, Norwati Jamaluddin and Zainorizuan Mohd Jaini

Concrete-filled hollow section (CFHS) is widely used in steel construction. The combination of concrete and steel decreases buckling and deformation of steel. However, studies…

Abstract

Purpose

Concrete-filled hollow section (CFHS) is widely used in steel construction. The combination of concrete and steel decreases buckling and deformation of steel. However, studies reveal that using normal concrete increases the dead weight of a structure. Therefore, a lightweight concrete, such as foamed concrete (FC), is proposed to reduce the weight of the structure. The purpose of this study is to determine the strength of modified fibrous foamed CFHS (FCFHS).

Design/methodology/approach

Steel and polypropylene fibres were used with rice husk ash, and short column fibrous FCFHSs were tested under compression load. Greased and non-greased methods were adopted to determine bond strength and confining effect between steel and concrete.

Findings

Results indicate that the use of fibre in FCFHSs improves the strength of CFHS from 9% to 11%. The non-greased method confirms that an interaction exists between steel and concrete with a confinement coefficient of more than 2.0.

Originality/value

It can be shown that the modified fibrous foamed concrete can increase the strength of the concrete and can be used as concrete filled in steel construction industry.

Details

World Journal of Engineering, vol. 17 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 January 2017

Anderson Vicente Borille, Jefferson de Oliveira Gomes and Daniel Lopes

Flame-retardant plastics are used in critical applications, such as aircraft interior parts, when the occurrence of fire can lead to serious injury to people. However, there is a…

Abstract

Purpose

Flame-retardant plastics are used in critical applications, such as aircraft interior parts, when the occurrence of fire can lead to serious injury to people. However, there is a lack of related publications. The purpose of this study is to present experimental data regarding geometrical analysis, such as dimensional accuracy and surface roughness, tensile strength and elongation of parts manufactured with flame-retardant materials by additive manufacturing.

Design/methodology/approach

Two additive manufacturing processes, selective laser sintering (SLS) and fused deposition modeling (FDM), were selected to manufacture the parts to be evaluated. Each process used its respective polymer, that is polyamide with flame-retardant additive (PA) for SLS and polyphenylsulfone (PPSF) for FDM. The samples consist of tensile specimens and representative parts of different products. Tensile tests were performed using standard tensile test machines, and geometrical analyses were performed using coordinate measuring machine as well as surface roughness tester.

Findings

As each material can be, in commercial machines, produced by only one process, the material selection for final products has to consider the manufacturing process as well. In general, although the FDM/PPSF process provided specimens with the highest ultimate strength, because of its strong influence by the building direction, FDM/PPSF also provided the lowest strength. SLS/PA was able to provide average strength with less dependency on the build-up direction. The geometrical analysis showed that SLS/PA presents a much smoother surface, but FDM/PPSF presented slightly better dimensional accuracy.

Originality/value

There is still lack of publications on polymers with flame resistance or flame-retardant polymers. Thus, this paper brings new technical information about processing such materials.

Details

Rapid Prototyping Journal, vol. 23 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 July 2021

Mardiana Said, Muhammad Firdaus Mohd Nazeri, Nurulakmal Mohd Sharif and Ahmad Azmin Mohamad

This paper aims to investigate the morphology and tensile properties of SAC305 solder alloy under the influence of microwave hybrid heating (MHH) for soldering at different…

Abstract

Purpose

This paper aims to investigate the morphology and tensile properties of SAC305 solder alloy under the influence of microwave hybrid heating (MHH) for soldering at different microwave parameters.

Design/methodology/approach

Si wafer was used as susceptor in MHH for solder reflow. Microwave operating power for medium and high ranging from 40 to 140 s reflow time was used to investigate their effect on the microstructure and strength of SAC305/Cu solder joints. The morphology and elemental composition of the intermetallic compound (IMC) joint were evaluated on the top surface and cross-sectional view.

Findings

IMC formation transformed from scallop-like to elongated scallop-like structure for medium operating power and scallop-like to planar-like structure for high operating power when exposed to longer reflow time. Compositional and phase analysis confirmed that the observed IMCs consist of Cu6Sn5, Cu3Sn and Ag3Sn. A thinner IMC layer was formed at medium operating power, 80 s (2.4 µm), and high operating power, 40 s (2.5 µm). The ultimate tensile strength at high operating power, 40 s (45.5 MPa), was 44.9% greater than that at medium operating power, 80 s (31.4 MPa).

Originality/value

Microwave parameters with the influence of Si wafer in MHH in soldering have been developed and optimized. A microwave temperature profile was established to select the appropriate parameter for solder reflow. For this MHH soldering method, the higher operating power and shorter reflow time are preferable.

Details

Soldering & Surface Mount Technology, vol. 34 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 18 January 2018

Duguta Suresh Kumar, Nikhil Suri and P.K. Khanna

The purpose of this work is to explore the forms of intermetallic phase compounds (IMPCs) in Pt/In/Au and Pt/In/Ag joints by using isothermal solidification. This lead-free…

Abstract

Purpose

The purpose of this work is to explore the forms of intermetallic phase compounds (IMPCs) in Pt/In/Au and Pt/In/Ag joints by using isothermal solidification. This lead-free technique leads to formation of IMPCs having high-temperature stable joints for platinum-based micro-heater gas sensor fabricated on low temperature co-fired ceramic (LTCC) substrate.

Design/methodology/approach

Proposed task is to make an interconnection for Pt micro-heater electrode pad to the silver and gold thick-films printed on LTCC substrate. Both Pt/In/Au and Pt/In/Ag configured joints with different interactive areas prepared at 190 and 220°C to study temperature and contact surface area effects on ultimate tensile strength of the joints, for a 20 s reaction time, at 0.2 MPa applied pressure. Those delaminated joint interfaces studied under SEM, EDAX and XRD.

Findings

IMPCs identified through material analysis using diffraction analysis of XRD data are InPt3, AgIn2, AgPt, AgPt3, Au9In4 and other stoichiometric compounds. The interactive surface area between thick-films and temperature increment shows improvement in the formations of IMPCs and mechanical stability of joints. These IMPCs-based joints have improved the mechanical stability to the joints to sustain even at high operating temperatures. Elemental mapping of the weak joint contact interface shows unwanted oxide formations also reported. Physical inter-locking followed by the diffusion phenomenon on the silver substrate strengthen the interconnection has been noticed.

Research limitations/implications

Inert gas environment creation inside the chamber to isolate the lead-free joint placed between heating stamp pads to avoid oxide formations at the interface while cooling which adds up to the cost of manufacturing. Most of the oxides at a joint-interface increase minute to moderate resistance with respect to the level of oxides took place. These oxides contributed heat certainly damage the micro-heater based gas sensors while functioning.

Practical implications

These isothermal solidification-based lead-free solder joints formation replace the existing lead-based packaging techniques. These lead-free interconnections on ceramic or LTCC substrate are reliable and durable, especially those designed to work for heavy-duty engines, even at severe environment conditions.

Originality/value

Platinum micro-heater-based gas sensors handles over a wide-range of temperatures about 300 to 500°C. The specific temperature level of different oxide films (SnO2) on the micro-heater is capable of detecting various specific gases. This feature of platinum based gas sensor demands durable and mechanically stable joints for continuous monitoring.

1 – 10 of over 1000