Search results

1 – 10 of 153
Article
Publication date: 16 November 2022

Mohd Nazri Ahmad, Mohamad Ridzwan Ishak, Mastura Mohammad Taha, Faizal Mustapha and Zulkiflle Leman

The purpose of this paper is to investigate the tensile strength, Young’s modulus, dimensional stability and porosity of acrylonitrile butadiene styrene (ABS)–oil palm fiber

Abstract

Purpose

The purpose of this paper is to investigate the tensile strength, Young’s modulus, dimensional stability and porosity of acrylonitrile butadiene styrene (ABS)–oil palm fiber composite filament for fused deposition modeling (FDM).

Design/methodology/approach

A new feedstock material for FDM comprising oil palm fiber and ABS as a matrix was developed by a twin screw extruder. The composite filament contains 0, 3, 5 and 7 Wt.% of oil palm fiber in the ABS matrix. The tensile test is then performed on the fiber composite filament, and the wire diameter is measured. In this study, the Archimedes method was used to determine the density and the porosity of the filament. The outer surface of the wire composite was examined using an optical microscope, and the analysis of variance was used to assess the significance and the relative relevance of the primary factor.

Findings

The results showed that increasing the fiber loading from 0.15 to 0.4 MPa enhanced tensile strength by 60%. Then, from 16.1 to 18.3 MPa, the Young’s modulus rose by 22.8%. The density of extruded filament decreased and the percentage of porosity increased when the fiber loading was increased from 3 to 7 Wt.%. The diameter deviation of the extruded filaments varied from −0.21 to 0.04 mm.

Originality/value

This paper highlights a novel natural resource-based feedstock material for FDM. Its mechanical and physical properties were also discovered.

Article
Publication date: 4 October 2017

M.R.M. Huzaifah, S.M. Sapuan, Z. Leman, M.R. Ishak and M.A. Maleque

The purpose of this paper is to present the review of natural fibre composites as well as a specific type of fibre, i.e., sugar palm fibre and its composites.

Abstract

Purpose

The purpose of this paper is to present the review of natural fibre composites as well as a specific type of fibre, i.e., sugar palm fibre and its composites.

Design/methodology/approach

The approach of this review paper is to present previous work on natural fibres and their composites. Then a review of several important aspects such as history, origin, botanic description, distribution, application and characterisation of sugar palm tree, and its fibre is presented. Finally a review of properties and characterisation of sugar palm composites is presented.

Findings

Findings of this review include the potential application of natural fibres and their composites for engineering application, the use of sugar palm and its fibres, as well as the suitability of sugar palm composites in engineering application after conducting review of their performance and characterisation.

Originality/value

The value of this review is to highlight the potential of natural fibres, natural fibre composites, sugar palm, sugar palm fibres and sugar palm composites as materials for engineering applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 May 2021

Mohd Fadzli Bin Abdollah, Hilmi Amiruddin and Mohamad Jabbar Nordin

This study aims to scrutinise the impact of fibre length and its composition on the tribological attributes of oil palm fibre (OPF) polymeric composite as an alternative brake…

Abstract

Purpose

This study aims to scrutinise the impact of fibre length and its composition on the tribological attributes of oil palm fibre (OPF) polymeric composite as an alternative brake friction material.

Design/methodology/approach

Fabrication of the sample was conducted by using a hot-compression method. The tribological test was carried out by deploying a ball-on-disk tribometer. Analysis of the data was then done by using the Taguchi approach as well as analysis of variance.

Findings

The results indicated that all design variables (fibre composition, length and treatment) are not statistically significant, as all p-values are greater than 0.05. Remarkably, irrespective of the fibre treatment, the wear rate and coefficient of friction (COF) distribution suggested that a smaller fibre length with a high fibre composition might enhance the composite’s tribological performance with COF of 0.4 and wear rate below than 1 × 10–9 mm3/Nm. The predominant wear mechanisms were identified as micro-cracks, fine grooves and fibre debonding.

Research limitations/implications

In this study, all-inclusive scrutiny needs to be carried out for further exploration.

Originality/value

The main contribution and novelty of this study are opening a new perspective on the formulation of new substances from bio-based material (i.e. OPF) that possess superior tribological characteristics for friction-based applications.

Details

Industrial Lubrication and Tribology, vol. 73 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 March 2018

Desalegn Atalie and Rotich K. Gideon

This study aims at extracting and characterizing palm leaf fibers from Elaeis guineensis species of palm trees found in Ethiopia.

Abstract

Purpose

This study aims at extracting and characterizing palm leaf fibers from Elaeis guineensis species of palm trees found in Ethiopia.

Design/methodology/approach

The fibers were extracted using three methods: manually, through water retting and chemically with sodium hydroxide. Physical parameters of the extracted fibers were evaluated, including tensile strength, fiber fineness, moisture content, degradation point and functional groups. Its cellulose, hemicellulose and lignin contents were also analyzed.

Findings

The results showed that the palm leaf fibers have a comparable fiber strength (170-450 MPa), elongation (0.95-1.25 per cent), fiber length (230-500 mm) and moisture regain (8-10 per cent) to jute, sisal and flax and thus can be used for technical textile application.

Originality/value

The fibers extracted using the water retting method had better properties than the other extraction methods. Its fiber length of 307 mm, cellulose content of 58 per cent, strength of 439 MPa and elongation of 1.24 per cent were the highest for all the extracted fibers. When compared with other fibers, palm leaf fiber properties such as tensile strength (439 MPa), elongation (1.24 per cent), moisture content (7.9-10.4 per cent and degradation point (360-380°C) were consistent with those of jute, sisal and ramie fibers. Hence, palm leaf fibers can be used for technical textile applications such as composite reinforcement.

Details

Research Journal of Textile and Apparel, vol. 22 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Book part
Publication date: 4 May 2018

Zulnazri and Sulhatun

Purpose – This purpose of the research is to investigate the process of manufacturing LDPE recycle thermoplastic composites with reinforcement oil palm empty fruit bunch (OPEFB…

Abstract

Purpose – This purpose of the research is to investigate the process of manufacturing LDPE recycle thermoplastic composites with reinforcement oil palm empty fruit bunch (OPEFB) biomass microfillers.

Design/Methodology/Approach – Methods of physical and chemical modification of OPEFB fibers into the LDPE matrix and the addition of some compatibilizer such as MAPE and xylene process through melt blending can improve mechanical properties, electrical properties, biodegradability, and improve the morphology of composites.

Research Limitations/Implications – These composites are prepared by the following matrix ratio: filler (70:30)% and filler size (63, 75, 90, and 106) μm. The LDPE plastic is crushed to a size of 0.5–1 cm, then pressed with hot press free heating for 5 min and with a pressure of 10 min at 145 °C. Based on the characterization obtained, the tensile strength and the high impact on the use of 106 μm filler is 13.86 MPa and 3,542.6 J/m2, and thermal stability indicates the degradation temperature (T0) 497.83 °C. FT-IR analysis shows the presence of functional groups of cellulose and lignin molecules derived from TKKS collected in the composite.

Practical Implications – Based on the characterization obtained, this composite can be applied as furniture material and vehicle dashboard.

Originality/ValueComposites obtained from recycle of LDPPE plastics waste has some advantages such as good compatibility and high tensile strength. This composite used the OPEFB filler whose size is in micrometer, and so this product is different from other products.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Book part
Publication date: 5 June 2023

Figen Balo and Lutfu S. Sua

Composites based on fiber are commonly used in high-performance building materials. The composites mostly use petrochemically derived fibers like polyester and e-glass, due to…

Abstract

Composites based on fiber are commonly used in high-performance building materials. The composites mostly use petrochemically derived fibers like polyester and e-glass, due to their advantageous material features like high stiffness and strength. All the same, these fibers also have important shortcomings related to energy consumption, recyclability, initial processing expense, resulting health hazards, and sustainability. Increasing environmental awareness and new sustainable building technologies are driving the research, development, and usage of “green” building materials, especially the development of biomaterials.

In this chapter, the natural fiber evaluation approach is applied, which covers a diverse set of criteria. Consequently, the comparative assessment of diverse natural fiber types is applied through the use of an expert decision system approach. The best performing fiber choice is made by comparatively evaluating the materials related to green building. The proposed fiber can be used and applied by green building material manufacturing companies in various countries or locations as a reference when selecting the fiber with the best performance.

Details

Pragmatic Engineering and Lifestyle
Type: Book
ISBN: 978-1-80262-997-2

Keywords

Article
Publication date: 23 December 2015

E. O. Onuorah, C.A. Okeke, J. T. Nwabanne, E. L. C. Nnabuife and S. O. M. Obiorah

Cement bonded composites of 1250 kg/m3 were made in the laboratory either as single layer composed of exclusively oil palm empty fruit bunch (EFB); Tropical hardwood sawmill…

103

Abstract

Cement bonded composites of 1250 kg/m3 were made in the laboratory either as single layer composed of exclusively oil palm empty fruit bunch (EFB); Tropical hardwood sawmill residue (THSR) or randomly mixed particles (40% of EFB and 60% of THSR oven dry wt/wt) OR of 3-layer composed of 1:2:1 ratio (for face layer of THSR; core layer of EFB and back layer of THSR particles, wt/wt, respectively). Composites were produced at 4 levels of CaCl2 addition (0, 1, 2 and 3% wt/wt based on cement wt) and 6 levels of initial water content of the cement/aggregate mixture (2.5:1:0.5; 2.5:1:1; 2.5:1:1.5; 2.5:1:2; 2.5:1:2.5 and 2.5:1:3; ratio wt/wt based on cement wt plus oven dry wt of particles). Proximate chemical analysis of representative samples reveal hollocellulose content (77.35 and 74.11%); a-cellulose (43.51 and 52.01%); Hemicellulose (22.9 and 20.2%). Lignin (17.8 and 22.5%); Ash (0.91 and 1.85%) and solubility in Alcohol-benzene (1.6 and 3.98%); cold water (2.42 and 3.15%); Hot water (2.93 and 5.06%); and 1% NaOH (23.4 and 26.11%) respectively for EFB and THSR. Also Morphological studies reveal mean fiber length (1.06 and 1.18mm); Fiber diameter (11.75 and 17.40μm), slenderness ratio (55.79 and 35.98) and Rigidity co-efficient (0.38 and 0.47) respectively for EFB and THSR. The above make both particle sources suitable substitutes for virgin fiber/particles from hardwoods. A total of 192 composites were made representing two panels per production mix. Composites were sampled and tested in accordance with provisions of ASTM D1037-2007. Composite properties ranges are MOR (2.61–20.81 MPa); MOE (2180–5764 MPa); IB (0.28–0.75 MPa). WA (16.41–28.11%) and TS (1.26–5.98%). Properties were evaluated and only production mix that met both the requirements of International Organization for Standardization (10S 8335–1987) and Malaysian Standard Institute (MS 934–1984) were recommended. Acceptable composites were produced from production mix of initial water content ≥1.5 or 30% (based on cement wt + oven dry wt of particles, wt/wt) and 2 or 3% CaCl2 additive in case of single layer composites while ≥ 2 or 36.36% of initial water content is required in 3-layer composite using same additive level. The effects of furnish type and composition, additive level and initial water content on properties were all found significant (P > 0.01) in factorial analysis.

Article
Publication date: 16 November 2021

M. Balasubramanian, Thozhuvur Govindaraman Loganathan and R. Srimath

The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.

Abstract

Purpose

The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.

Design/methodology/approach

Fabrication methods and material characterization of various hybrid bio-composites are analyzed by studying the tensile, impact, flexural and hardness of the same. The natural fiber is a manufactured group of assembly of big or short bundles of fiber to produce one or more layers of flat sheets. The natural fiber-reinforced composite materials offer a wide range of properties that are suitable for many engineering-related fields like aerospace, automotive areas. The main characteristics of natural fiber composites are durability, low cost, low weight, high specific strength and equally good mechanical properties.

Findings

The tensile properties like tensile strength and tensile modulus of flax/hemp/sisal/Coir/Palmyra fiber-reinforced composites are majorly dependent on the chemical treatment and catalyst usage with fiber. The flexural properties of flax/hemp/sisal/coir/Palmyra are greatly dependent on fiber orientation and fiber length. Impact properties of flax/hemp/sisal/coir/Palmyra are depended on the fiber content, composition and orientation of various fibers.

Originality/value

This study is a review of various research work done on the natural fiber bio-composites exhibiting the factors to be considered for specific load conditions.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 February 2015

J. Nwabanne, P. Igbokwe and E. Ezeonyebuchi

The effect of partial replacement of carbon black by Palmyra palm fiber on the cure characteristics, physico-mechanical and swelling properties of natural rubber vulcanizates was…

Abstract

The effect of partial replacement of carbon black by Palmyra palm fiber on the cure characteristics, physico-mechanical and swelling properties of natural rubber vulcanizates was studied. The Palmyra palm fibers were extracted, treated and characterized so as to determine pH, moisture content, and ash content, loss on ignition, conductivity, cellulose, lignin, Hemicellulose, cellulose/lignin ratio and Acid soluble lignin. The functional groups in the Palmyra palm fiber was also determined using FTIR. The Palmyra palm powder with an average particle size of 75 μm was used in this study. The natural rubber/carbon black/Palmyra palm fiber (NR/CB/PPF) composites having eight different loadings, 0/70, 10/60, 20/50, 30/40, 40/30, 50/20, 60/10, 70/0, were prepared using a laboratory size two roll mill. The maximum Torque of NR/CB/PPF composites increased with increasing commercial filler loading ratio. The scorch time and cure time of NR/CB/PPF composites decreased as the ratio of CB loading increased. The tensile strength, modulus of elongation, tear strength and abrasion resistance of all the composites increased as the commercial filler loading ratio increased. This is due to the presence of the commercial filler which gave a better filler interaction. Also this behavior can be attributed to the particle size and surface area of the fillers used as the fillers with small particle size usually have a larger surface area which supports better filler-rubber interaction. The hardness increased as the palmyra palm fiber loading increased. The elongation at break decreases as carbon black filler loading increases except for the composite with CB/PPF ratio of 10/60. The effect of filler loading on the swelling behavior of NR/CB/PPF composites was also investigated in aromatic and aliphatic compounds. Result showed that the composites with more carbon black has less absorption than those with more palmyra palm fiber showing that the compounds with more carbon black has better interaction than those with palmyra palm fiber.

Details

World Journal of Engineering, vol. 11 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 August 2021

Shailendra Singh Chauhan, Vaibhav Singh, Gauranshu Saini, Nitin Kaushik, Vishal Pandey and Anuj Chaudhary

The growing environmental awareness all through the world has motivated a standard change toward planning and designing better materials having good performance, which are very…

Abstract

Purpose

The growing environmental awareness all through the world has motivated a standard change toward planning and designing better materials having good performance, which are very much suited to the environmental factors. The purpose of this study is to investigate the impact on mechanical, thermal and water absorption properties of sawdust-based composites reinforced by epoxy, and the amount of sawdust in each form.

Design/methodology/approach

Manufacturing of the sawdust reinforced epoxy composites is the main area of the research for promoting the green composite by having good mechanical properties, biodegradability or many applications. Throughout this research work, the authors emphasize the importance of explaining the methodology for the evaluation of the mechanical and water absorption properties of the sawdust reinforced epoxy composites used by researchers.

Findings

In this paper, a comprehensive review of the mechanical properties of sawdust reinforced epoxy composite is presented. This study is reported about the use of different Wt.% of sawdust composites prepared by different processes and their mechanical, thermal and water absorption properties. It is studied that after optimum filler percentage, mechanical, thermal properties gradually decrease, but water absorption property increases with Wt.% of sawdust. The changes in the microstructure are studied by using scanning electron microscopy.

Originality/value

The novelty of this study lies in its use of a systematic approach that offers a perspective on choosing suitable processing parameters for the fabrication of composite materials for persons from both industry and academia. A study of sawdust reinforced epoxy composites guides new researchers in the fabrication and characterization of the materials.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 153