Search results

1 – 10 of 224
Article
Publication date: 30 April 2019

M. Ramesh, C. Deepa, G.R. Arpitha and V. Gopinath

In the recent years, the industries show interest in natural and synthetic fibre-reinforced hybrid composites due to weight reduction and environmental reasons. The purpose of…

Abstract

Purpose

In the recent years, the industries show interest in natural and synthetic fibre-reinforced hybrid composites due to weight reduction and environmental reasons. The purpose of this experimental study is to investigate the properties of the hybrid composites fabricated by using carbon, untreated and alkaline-treated hemp fibres.

Design/methodology/approach

The composites were tested for strengths under tensile, flexural, impact and shear loadings, and the water absorption characteristics were also observed. The finite element analysis (FEA) was carried out to analyse the elastic behaviour of the composites and predict the strength by using ANSYS 15.0.

Findings

From the experimental results, it is observed that the hybrid composites can withstand the maximum tensile strength of 61.4 MPa, flexural strength of 122.4 MPa, impact strength of 4.2 J/mm2 and shear strength of 25.5 MPa. From the FEA results, it is found that the maximum stress during tensile, flexural and impact loading is 47.5, 2.1 and 1.03 MPa, respectively.

Originality/value

The results of the untreated and alkaline-treated hemp-carbon fibre composites were compared and found that the alkaline-treated composites perform better in terms of mechanical properties. Then, the ANSYS-predicted values were compared with the experimental results, and it was found that there is a high correlation occurs between the untreated and alkali-treated hemp-carbon fibre composites. The internal structure of the broken surfaces of the composite samples was analysed using a scanning electron microscopy (SEM) analysis.

Details

World Journal of Engineering, vol. 16 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 November 2021

M. Balasubramanian, Thozhuvur Govindaraman Loganathan and R. Srimath

The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.

Abstract

Purpose

The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.

Design/methodology/approach

Fabrication methods and material characterization of various hybrid bio-composites are analyzed by studying the tensile, impact, flexural and hardness of the same. The natural fiber is a manufactured group of assembly of big or short bundles of fiber to produce one or more layers of flat sheets. The natural fiber-reinforced composite materials offer a wide range of properties that are suitable for many engineering-related fields like aerospace, automotive areas. The main characteristics of natural fiber composites are durability, low cost, low weight, high specific strength and equally good mechanical properties.

Findings

The tensile properties like tensile strength and tensile modulus of flax/hemp/sisal/Coir/Palmyra fiber-reinforced composites are majorly dependent on the chemical treatment and catalyst usage with fiber. The flexural properties of flax/hemp/sisal/coir/Palmyra are greatly dependent on fiber orientation and fiber length. Impact properties of flax/hemp/sisal/coir/Palmyra are depended on the fiber content, composition and orientation of various fibers.

Originality/value

This study is a review of various research work done on the natural fiber bio-composites exhibiting the factors to be considered for specific load conditions.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 June 2018

Shariful Islam and Shaikh Md. Mominul Alam

The purpose of this paper is to investigate the acoustic properties of needle-punched nonwovens produced of bamboo, banana and hemp fibers blended with polyester (PET) and…

Abstract

Purpose

The purpose of this paper is to investigate the acoustic properties of needle-punched nonwovens produced of bamboo, banana and hemp fibers blended with polyester (PET) and polypropylene (PP) as they are supportive enough to minimize sound transmission inside the automobiles.

Design/methodology/approach

Textile materials like bamboo, banana and hemp blended with PET and PP in the ratio of 35:35:30 were applied to make the web. The needle-punching technique was applied to each web for three times to form a full nonwoven textile composite. The concept of PET/PP blend with natural fibers was to enhance the consistency and thermoform propensity of the composites. When nonwoven textile composites were placed in between a sound source and a receiver, they absorbed annoying sound by dissolving sound wave energy. Sound absorption coefficient was measured by the impedance tube method as per ASTM C384 Standard. Bamboo/PET/PP composite showed the highest absorption coefficient in most of the frequencies.

Findings

Physical and comfort properties were tested for the composites and it was noticed that bamboo/PET/PP composites with its compressed structure showed a better stiffness value, lesser thermal conductivity, lesser air permeability, better absorption coefficient and highest sound transmission loss compared to other two composites. At 840 Hz, the absorption coefficient of bamboo/PET/PP remained in satisfactory level but it was inferior by 20 percent in banana/PET/PP. Conversely at more frequencies like 1,680 Hz, there was a decrease from the target level in all the nonwovens composites, which could be enhanced by raising the thickness of the nonwovens, and all these properties of bamboo/PET/PP were considered appropriate for controlling noise inside the vehicles.

Practical implications

This research will provide facilities to decrease noise inside the vehicles. It will improve the apparent value of the automobiles to the traveler and also provide a sensible goodwill to the manufacturer.

Originality/value

This research will open several ways for the development of different nonwoven composites, particularly for the sound absorption and will open possible ways for the scholars to further study in this field.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 June 2021

Faid Hayette, Abadou Yacine and Ghrieb Abderrahmane

The purpose of this paper is to characterize the properties lightweight green air lime and marble waste mixtures, relating microstructural and chemical properties with physical…

Abstract

Purpose

The purpose of this paper is to characterize the properties lightweight green air lime and marble waste mixtures, relating microstructural and chemical properties with physical development of the material, an effort has been made to simulate the structure of the different mortar reinforced by two main layers plants.

Design/methodology/approach

This paper presents an experimental design of response surface methodology, a model which predicts the mechanical strength and evaluate the effectiveness of bio-waste as a corrosion inhibitor to resist the steel corrosion in air lime mortars as a function of the proportion of the constituents of a new air lime mortar based on a combination of different percentages of marble waste (MRW), air lime and deferent type, layers of natural fiber reinforcement. Luffa sponge gourd and oakum hemp fiber residues capabilities in civil engineering are evaluated by combining numerical and experimental approaches for repair mortar based on air lime and marble waste. Several electrochemical techniques, mechanical strength tests and visual inspection of steel surface were performed.

Findings

The results revealed good mechanical strength and corrosion protection properties of air lime mortar containing the fiber naturel. These green wastes are considered economically feasible, as well having possessing good performance efficiency in protecting rebar reinforcement. These results were confirmed via polarization curves and electrochemical impedance spectroscopy measurements.

Originality/value

The prepared green air lime mortar provided good corrosion protection to the rebar. The significance of this study is to encourage the usage of solid white marble waste to prepare biomass-based repair mortar with good mechanical and anti-corrosion properties on the long term is still a big challenge.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Book part
Publication date: 5 June 2023

Figen Balo and Lutfu S. Sua

Composites based on fiber are commonly used in high-performance building materials. The composites mostly use petrochemically derived fibers like polyester and e-glass, due to…

Abstract

Composites based on fiber are commonly used in high-performance building materials. The composites mostly use petrochemically derived fibers like polyester and e-glass, due to their advantageous material features like high stiffness and strength. All the same, these fibers also have important shortcomings related to energy consumption, recyclability, initial processing expense, resulting health hazards, and sustainability. Increasing environmental awareness and new sustainable building technologies are driving the research, development, and usage of “green” building materials, especially the development of biomaterials.

In this chapter, the natural fiber evaluation approach is applied, which covers a diverse set of criteria. Consequently, the comparative assessment of diverse natural fiber types is applied through the use of an expert decision system approach. The best performing fiber choice is made by comparatively evaluating the materials related to green building. The proposed fiber can be used and applied by green building material manufacturing companies in various countries or locations as a reference when selecting the fiber with the best performance.

Details

Pragmatic Engineering and Lifestyle
Type: Book
ISBN: 978-1-80262-997-2

Keywords

Article
Publication date: 8 July 2021

Mallika Datta, Debasish Das and Devarun Nath

The study aims to review the literatures on the effect of fiber length on the mechanical response of natural fiber composite will help the researchers to know about the…

Abstract

Purpose

The study aims to review the literatures on the effect of fiber length on the mechanical response of natural fiber composite will help the researchers to know about the perspective of the various natural fibers in making of composite concerning fiber length. The review summarized the work of the other researchers, thereby unambiguously précised suitability of a specific natural fiber for a matrix in use. Thus, one can identify the use of the same fibers–matrix combination to obtain composites with different properties with the control of fiber/matrix interface.

Design/methodology/approach

The review work proposes a new kind of diagrammatic representation that expresses the influence of fiber length. This work has not been explored before in this specific format. The chronology of work may help to select natural fibers for use in composites for a specific matrix.

Findings

The length of the fiber perception in terms of “critical” length decides the need for pre-treatment process of natural fiber to improve shear stress at the interface for various matrices.

Originality/value

The current review paper attempts to shed light on the association between the fiber length of natural fiber and the mechanical response of natural fiber composite. Moreover, it probes the concepts of critical fiber length as a persuadable factor.

Details

Research Journal of Textile and Apparel, vol. 26 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 5 June 2020

Lai Jiang, Xiaobo Peng and Daniel Walczyk

This paper aims to summarize the up-to-date research performed on combinations of various biofibers and resin systems used in different three-dimensional (3D) printing…

Abstract

Purpose

This paper aims to summarize the up-to-date research performed on combinations of various biofibers and resin systems used in different three-dimensional (3D) printing technologies, including powder-based, material extrusion, solid-sheet and liquid-based systems. Detailed information about each process, including materials used and process design, are described, with the resultant products’ mechanical properties compared with those of 3D-printed parts produced from pure resin or different material combinations. In most processes introduced in this paper, biofibers are beneficial in improving the mechanical properties of 3D-printed parts and the biodegradability of the parts made using these green materials is also greatly improved. However, research on 3D printing of biofiber-reinforced composites is still far from complete, and there are still many further studies and research areas that could be explored in the future.

Design/methodology/approach

The paper starts with an overview of the current scenario of the composite manufacturing industry and then the problems of advanced composite materials are pointed out, followed by an introduction of biocomposites. The main body of the paper covers literature reviews of recently emerged 3D printing technologies that were applied to biofiber-reinforced composite materials. This part is classified into subsections based on the form of the starting materials used in the 3D printing process. A comprehensive conclusion is drawn at the end of the paper summarizing the findings by the authors.

Findings

Most of the biofiber-reinforced 3D-printed products exhibited improved mechanical properties than products printed using pure resin, indicating that biofibers are good replacements for synthetic ones. However, synthetic fibers are far from being completely replaced by biofibers due to several of their disadvantages including higher moisture absorbance, lower thermal stability and mechanical properties. Many studies are being performed to solve these problems, yet there are still some 3D printing technologies in which research concerning biofiber-reinforced composite parts is quite limited. This paper unveils potential research directions that would further develop 3D printing in a sustainable manner.

Originality/value

This paper is a summary of attempts to use biofibers as reinforcements together with different resin systems as the starting material for 3D printing processes, and most of the currently available 3D printing techniques are included herein. All of these attempts are solutions to some principal problems with current 3D printing processes such as the limit in the variety of materials and the poor mechanical performance of 3D printed parts. Various types of biofibers are involved in these studies. This paper unveils potential research directions that would further widen the use of biofibers in 3D printing in a sustainable manner.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 December 2021

Rajkumar Devapiriam, Karthik S. and Santhy K.

The purpose of this study is to fabricate and compare the mechanical and thermal properties of Sansevieria and Kaans fiber reinforced polyester matrices composites.

Abstract

Purpose

The purpose of this study is to fabricate and compare the mechanical and thermal properties of Sansevieria and Kaans fiber reinforced polyester matrices composites.

Design/methodology/approach

Treated Sansevieria and Kaans fiber was used as reinforcement for the fabrication of polymer matrix composites. Kaans fiber, which was available plenty in the delta region, but physical and mechanical properties of Kaans fiber were low when it compared with Sansevieria fiber. To make use of Kaans fiber for the fabrication of composite, the physical and mechanical properties have to be enhanced. So Egg shell powder was selected as a filler material to enhance the Kaans fiber reinforced composite. The selected fibers were properly weaved after alkali treatment. A three-layered (0°/45°/0°) Sansevieria fiber reinforced polymer (S-FRP) and Kaans fiber reinforced polymer (K-FRP) composite plates were fabricated using the compression molding method. As per American Society for Testing and Materials standards, the specimens were cut and mechanical, thermal and absorption properties of Sansevieria and Kaans fiber composites were investigated experimentally.

Findings

Tensile and flexural test reveals that K-FRP composite has good ductility and bending property than S-FRP composite plate. But from the other test results, S-FRP possesses high elongation capability than K-FRP. Thermo gravimetric analysis, moisture absorption and swelling test too done which clearly appeared S-FRP composite plate has prevalent execution than K-FRP composite plate.

Originality/value

This original research study enlists the mechanical, thermal properties and absorption properties of fabricated S-FRP and K-FRP composite plates.

Details

Pigment & Resin Technology, vol. 51 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 January 2022

Saravanan N., Navin Kumar B., Bharathiraja G. and Pandiyarajan R.

This paper aims to investigate the resultant optimal ultimate tensile strength, elongation, flexural strength and modulus, compression strength and impact strength of fabricated…

Abstract

Purpose

This paper aims to investigate the resultant optimal ultimate tensile strength, elongation, flexural strength and modulus, compression strength and impact strength of fabricated alkali-treated Lagenaria siceraria fiber (LSF)-reinforced polymer matrix composite by optimizing input factors and microstructural characterization by influencing fiber length, fiber concentration and treatment condition of LSF.

Design/methodology/approach

The fabrication of LSF-reinforced composite specimens involved surface treatment followed by custom experimental design using a simple hand layup process. The wear analysis was performed by a multi-tribotester TR25 machine, and the developed model was validated by using statistical software Design Expert V.8 and analysis of variance (ANOVA). The surface morphology of the sample was also analyzed by field emission scanning electron microscopy.

Findings

The alkali treatment for LSFs had reduced the hemicellulose, and enhanced mechanical performance was observed for 30 wt.% concentration of L. siceraria in epoxy resin. Thermogravimetric analysis revealed thermal stability up to 245°C; microstructure revealed fiber entanglements in case of longer fiber length and compression strength reduction; and the surface-treated fiber composites exhibited reduced occurrences of defects and enhanced matrix–fiber bonding. Enhanced mechanical performances were observed, namely, ultimate tensile strength of 17.072 MPa, elongation of 1.847%, flexural strength of 50.4 MPa, flexural modulus of 3,376.31 GPa, compression strength of 52.154 MPa and impact strength of 0.53 joules.

Originality/value

The novel approach of optimizing and characterizing alkali surface-treated LSF-reinforced epoxy matrix composite was explored, varying fiber length and concentrations for specimens by empirical relations and experimental design to obtain optimal performance validated by ANOVA. Enhanced properties were obtained for: 7 mm fiber length and 30 wt.% concentration of fiber in the composite for alkali-treated fiber.

Details

Pigment & Resin Technology, vol. 52 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 March 2015

Youngjoo Na and Dong Kyu Na

Fashion and textile industry has confronted to participate with the sustainable industry and society proactively not by the government regulations, but by the shareholders or…

2065

Abstract

Purpose

Fashion and textile industry has confronted to participate with the sustainable industry and society proactively not by the government regulations, but by the shareholders or consumers driven with corporate social responsibility. The purpose of this paper is to consider methods applied for the sustainability of products according to Korean domestic fashion and textile companies and clothing types and to investigate the limitation of current sustainability methods of companies.

Design/methodology/approach

The study used document analysis and case studies of 396 companies. The study looked into newspapers, monthly magazines, and publications of fashion companies and internet web sites of almost every possible type that have been issued to date and analyzed the previous studies as well.

Findings

The companies’ strategies are of three groups, the uses of environmental friendly materials: 36.9 percent (natural fibers, recycled fibers and biodegradable fibers), apparel reuse: 4.5 percent (remodeling/alteration and transform/combination with more materials), and eco-marketing promotions: 58.6 percent. For women’s and casual wear section, the methods used with organic materials and the green-campaign messages appeared frequently, while in the men’s wear section, coolMapsi, 0or warm OnMapsi for business wear did a lot for the low indoor energy consumption, such as no neck-tie in the hot season or wearing underwear in the cold season.

Originality/value

Fashion and textile products have provided the key solutions for the generation’s happiness, identity, value, self-realization, health and role. There have been the low quality and similarity of fashion products from mass production and high speed and we should consider sustainability for the next generation and society. But the current problem in the industry is that most of eco-product developments are only short term. Also, from the high cost of eco materials and processes, there is a limited portion of sustainability section among total products and low design quality of fashion or the low profit outcomes.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 224