Search results

1 – 10 of 327
Article
Publication date: 10 November 2020

Azmat Ullah, Muhammad Ayat, Hakeem Ur Rehman and Lochan Kumar Batala

The purpose of this paper is to develop a model that determines whether how much effort of preventive maintenance action is worthwhile for the consumer over the post-sale product…

Abstract

Purpose

The purpose of this paper is to develop a model that determines whether how much effort of preventive maintenance action is worthwhile for the consumer over the post-sale product life cycle of a repairable complex product where the product is under warranty and subject to stochastic multimode failure process, that is, damaging failure and light failure with different probabilities.

Design/methodology/approach

The expected life cycle cost is designed for a warranted product from the consumer perspective. The product failure is quantified with failure rate function, which is the number of failures incurred over the product life cycle. The authors consider the failure rate function reduction method in their model where the scale parameter of a failure rate function is maximized by applying the optimal preventive maintenance level. The scale parameter of any failure distribution refers to the meantime to failure (MTTF). The first-order condition is applied with respect to the maintenance level in order to achieve the convexity of the nonlinear function of the expected life cycle cost function.

Findings

The authors have found analytically the close form of the preventive maintenance level, which can be used to find the optimal reduced form of the failure rate function of the product and the minimum product expected life cycle cost under the given condition of multimode stochastic failure process. The authors have suggested different maintenance policies to consumers in order to implement the proposed preventive maintenance model under different conditions. A numerical example further illustrated the analytical model by considering the Weibull distribution.

Practical implications

The consumer may use this study in the accurate modeling of the life cycle cost of a product that is under warranty and fails with a multimode failure process. Also, the suggested preventive maintenance approach of this study helps the consumer in making appropriate maintenance decisions such as to minimize the expected life cycle cost of a product.

Originality/value

This study proposes an accurate estimation of a life cycle cost for a product that is under the support of warranty and fails with multimode. Furthermore, for such a kind of product, which is under warranty and fails with multimode, this study suggests a new preventive maintenance approach that assures the minimum expected life cycle cost.

Details

International Journal of Quality & Reliability Management, vol. 38 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 13 August 2018

Jan-Philipp Roth, Thomas Kühler and Elmar Griese

For the realization of optical waveguide components, needed for photonic integrated circuits, multimode-interference based (MMI-based) devices are an excellent component class for…

Abstract

Purpose

For the realization of optical waveguide components, needed for photonic integrated circuits, multimode-interference based (MMI-based) devices are an excellent component class for the realization of low loss optical splitters. A promising approach to the manufacturing of these components is their embedding in thin glass sheets by ion-exchange diffusion processes, which has not yet been extensively studied. This study aims to significantly enhance the modeling of the diffusion process to support manufacturing of graded-index, MMI-based optical splitters.

Design/methodology/approach

The methods of design and analysis of MMI-based components are based on a step-index refractive index profile. In this work, fundamental correlations between the properties of the manufacturing ion-exchange process and the characteristics of the graded-index, MMI-based components are established. The refractive index profile is calculated with a proprietary solver based on the finite element method. Any further investigation with respect to parameter influence is based on the beam propagation method, specifically a finite difference based, semi-vectorial, wide-angle beam propagation algorithm. The influence of the parameters of the self-imaging effect is investigated. On this basis, different approaches for efficient power splitting with graded-index, MMI-based waveguide components are evaluated.

Findings

Easy approximations – mostly linear – can be found to model the dependencies of the investigated parameters. The resulting graded-index splitters are characterized by their low excess and insertion loss.

Originality/value

These findings are the first step in the direction of the semi-analytical modeling of the respective waveguide components to reduce the numerical effort.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 May 2012

Shefiu S. Zakariyah, Paul P. Conway, David A. Hutt, Navin Suyal and David R. Selviah

The purpose of this paper is to present the need, and a potential solution, for in‐plane routing of optical signals for optical‐enabled circuit boards.

Abstract

Purpose

The purpose of this paper is to present the need, and a potential solution, for in‐plane routing of optical signals for optical‐enabled circuit boards.

Design/methodology/approach

Multimode waveguides and integrated 45° in‐plane mirror structures were made in a low loss acrylate‐based photopolymer using excimer laser ablation. The fabrication of multimode waveguides and mirrors was carried out in a single laser system which minimised alignment issues.

Findings

It was established that in‐plane mirror fabrication using laser ablation can be achieved and can potentially be used to define mirrors in waveguides made by other methods such as photolithography.

Research limitations/implications

While the concept (integrated in‐plane mirror) was demonstrated, the viability of its deployment will depend on the results of optical loss measurements for which further research is required.

Originality/value

The paper gives an overview of the design concept and fabrication steps for an in‐plane embedded mirror.

Article
Publication date: 1 March 2005

J. Heilala, K. Keränen, J.‐T. Mäkinen, O. Väätäinen, K. Kautio, P. Voho and P. Karioja

The aim of the research was to evaluate the concept that utilizes structured planar substrates based on low temperature co‐fired ceramics (LTCC) as a precision platform for the…

1392

Abstract

Purpose

The aim of the research was to evaluate the concept that utilizes structured planar substrates based on low temperature co‐fired ceramics (LTCC) as a precision platform for the passive alignment of a multimode fiber and wide‐stripe diode laser.

Design/methodology/approach

Presents the manufacturing process for realisation of 3D precision structures, heat dissipation structures and a cooling channel into the LTCC substrate. The developed methodology for 3D modelling and simulation of the system was used to optimize structures, materials and components in order to achieve optimal performance for the final product and still maintain reasonably low fabrication costs. The simulated optical coupling efficiency and alignment tolerances were verified by prototype realization and characterization.

Findings

The achieved passive alignment accuracy allows high coupling efficiency realisations of multimode fiber pigtailed laser modules and is suitable for mass production.

Research limitations/implications

Provides guidance in the design of LTCC precision platforms for passive alignment and presents a hybrid simulation method for photonics module concept analysis.

Practical implications

The three‐dimensional shape of the laminated and fired ceramic substrate provides the necessary alignment structures including holes, grooves and cavities for the laser to fiber coupling. Thick‐film printing and via punching can be incorporated in order to integrate electronic assemblies directly into the opto‐mechanical platform.

Originality/value

Introduces the LTCC 3D precision structures for photonics modules enabling passive alignment of multimode fiber pigtailed laser with high efficiency optical coupling. Demonstrates the hybrid simulation methodology for concept analysis.

Details

Assembly Automation, vol. 25 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 21 January 2022

Xuelong Li, Lei Jiang, Xinxin Liu, Ruina Dang, Fusheng Liu, Wang Wei, Tong Zhang and Guoshun Wang

The purpose of this paper is to introduce the modeling and implementation of a novel multimode amphibious robot, which is used for patrol and beach garbage cleaning in the…

Abstract

Purpose

The purpose of this paper is to introduce the modeling and implementation of a novel multimode amphibious robot, which is used for patrol and beach garbage cleaning in the land–water transition zone.

Design/methodology/approach

Starting from the design idea of multimode motion, the robot innovatively integrates the guiding fin and wheel together, is driven by the same motor and can achieve multimodal motion such as land, water surface and underwater with only six actuated degrees of freedom. The robot dispenses with the transmission mechanism by directly connecting the servo motor with a reducer to the actuator, so it has the characteristics of simplifying the structure and reducing the quality. And to the best of the authors' knowledge, the design of the robot can be considered the minimal configuration of amphibious robots with the same locomotion capabilities.

Findings

Based on the classical assumptions of underwater dynamics analysis, this paper uses basic airfoil theory to analyze the dynamics of the robot’s horizontal and vertical motions and establishes its simplified dynamics model. Also, the underwater motion of the robot is simulated, and the results are in good agreement with the existing research results. Finally, to verify the feasibility of the robot, a prototype is implemented and fully evaluated by experiments. Experimental results show that the robot can reach the maximum speed of 2.5 m/s and 0.3 m/s on land and underwater, respectively, proving the effectiveness of the robot.

Originality/value

The robot has higher work efficiency with the powerful multimode motion, and its simplified structure makes it more stable while costing less.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 May 2008

David R. Selviah, F. Aníbal Fernández, Ioannis Papakonstantinou, Kai Wang, Hadi Bagshiahi, Andy C. Walker, Aongus McCarthy, Himanshu Suyal, David A. Hutt, Paul P. Conway, John Chappell, Shefiu S. Zakariyah and Dave Milward

To introduce the Innovative Electronics Manufacturing Research Centre Flagship Project: Integrated Optical and Electronic Interconnect PCB Manufacturing, its objectives, its…

Abstract

Purpose

To introduce the Innovative Electronics Manufacturing Research Centre Flagship Project: Integrated Optical and Electronic Interconnect PCB Manufacturing, its objectives, its consortium of three universities and ten companies and to describe the university research being carried out. This paper briefly reviews the motivation for developing novel polymer formulations, fabrication techniques, layout design rules and characterisation techniques for hybrid electronic and optical printed circuit boards (PCBs) using multimode polymer optical waveguide interconnects.

Design/methodology/approach

The authors are investigating a number of different fabrication techniques which they compare with each other and with modelled calculations of waveguide components. The fabrication techniques include photolithography, laser ablation, direct laser writing, embossing, extrusion and ink jet printing.

Findings

A number of design rules for polymer multimode waveguides have been found and published. Techniques for ink jetting polymer to print waveguides and laser ablation techniques have been developed. New formulations of polymer which cure faster for direct writing have also been developed.

Research limitations/implications

Further work is needed to thicken the ink jet printed polymer and to investigate side wall roughness of the ablated waveguides and development of new polymer formulations for dry film. Further research is also needed on construction of prototype system demonstrators.

Practical implications

The fabrication techniques being developed are designed to be transferred to industrial PCB manufacturers to enable them to make higher value optical PCBs. The design rules being discovered are being entered into commercial PCB layout software to aid designers of optical PCBs.

Originality/value

The paper is of interest to PCB manufacturers who wish to upgrade their processes to be able to manufacture optical PCBs. The university research is original and some has been published as shown in the publications in the reference list.

Details

Circuit World, vol. 34 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 12 August 2019

Nurul Hazwani Daud, Siti Nurbaya Oslan, Thean Chor Leow and Abu Bakar Salleh

The main purpose of this study is to demonstrate the development of an enzyme-based sensor for haloalkane detection. Haloalkane is a toxic compound that is found as genotoxic…

Abstract

Purpose

The main purpose of this study is to demonstrate the development of an enzyme-based sensor for haloalkane detection. Haloalkane is a toxic compound that is found as genotoxic impurities in pharmaceutical products and contaminants in waste. The need to investigate the genotoxic level in pharmaceutical manufacturing is very crucial because of its toxicity effects on human health. The potential of mini protein as an alternative bioreceptor was explored with the aim to be more effective and stable under extreme conditions.

Design/methodology/approach

Mini proteins of haloalkane dehalogenase (HLD) were computationally designed and experimentally validated. Tapered multimode fiber (TMMF) was bio-functionalized with a bioreceptor either native (positive control) or mini protein. The absorbance-based sensor resulting from the binding interaction of mini protein with haloalkane was monitored through a wavelength range of 200-1,300 nm.

Findings

An increment of the UV absorption is observed at 325 nm when haloalkane interacted with the immobilized bioreceptors, native or mini protein. Both biosensors displayed a continuous response over the range of 5-250 µM haloalkane. They also had the capability to detect haloalkanes below 1 min and with an operational stability of up to seven days without significant loss of sensitivity.

Practical implications

The results indicate the potential viability of the enzyme HLD-based sensor to monitor the existence of haloalkane in both pharmaceutical and environmental products.

Originality/value

The paper describes an outcome of experimental work on TMMF-based biosensor coated with HLD for label-free haloalkane detection. Mini protein can be used as an effective bioreceptor with some structural modification to improve functionality and stability.

Details

Sensor Review, vol. 39 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 August 2014

M. Batumalay, A. Lokman, H.A. Rahman, S.W. Harun and H. Ahmad

This paper aims to propose and demonstrate a simple fiber optic sensor using a tapered plastic multimode fiber as a probe for measurement of calcium nitrate concentrations in…

Abstract

Purpose

This paper aims to propose and demonstrate a simple fiber optic sensor using a tapered plastic multimode fiber as a probe for measurement of calcium nitrate concentrations in de-ionized water.

Design/methodology/approach

The working mechanism is based on the observed increment in the transmission of the sensor that is immersed in calcium nitrate solution of higher concentration. The tapering of the plastic fiber is carried out by etching method using acetone, sand paper and de-ionized water.

Findings

Tapered fiber with diameter 0.45 mm gives the highest sensitivity of 0.028 mV/% due to better interaction between the evanescent field and the calcium nitrate solution with a good slope linearity of more than 98 per cent for a 1.07 per cent limit of detection in a straight probe arrangement. The use of calcium and nitrate ions within the sensing medium demonstrates the strong dependency of the sensor output trend on the electrolytic nature of the chemical solutions.

Originality/value

Demonstration of tapered plastic multimode fiber sensor probe for measurement electrolytic chemical solutions.

Details

Sensor Review, vol. 34 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 November 2018

Chunlan Liu, Yong Wei, Yudong Su, Hao Liu, Yonghui Zhang and Xiangfei Nie

This paper aims to propose and demonstrate a novel surface plasmon resonance (SPR)-sensing approach by using the fundamental mode beam based on a graded index multimode fiber…

Abstract

Purpose

This paper aims to propose and demonstrate a novel surface plasmon resonance (SPR)-sensing approach by using the fundamental mode beam based on a graded index multimode fiber (GIF). The proposed SPR sensor has high sensitivity and controllable working dynamic range, which expects to solve the two bottlenecks of fiber SPR sensor, including low sensitivity and the difficulty in multichannel detection.

Design/methodology/approach

The low-order mode of the GIF to SPR sense, which keeps the sensitivity advantage of the single-mode fiber SPR sensor, is used. By using this new SPR sensor, the effect of light incident angle and gold film thickness on working dynamic range was studied. According to the study results, the smaller is the incident angle, the larger is the SPR working dynamic range and the longer is the resonance wavelength with a fixed gold film thickness; the larger is the gold film thickness, the longer is the resonance wavelength with a fixed grinding angle. After the parameter optimization, the sensitivity of these two parameter-adjusting methods reach 4,442 and 3031 nm/RIU.

Originality/value

When the grinding angle of the GIF increases, the dynamic range of the resonance wavelength increases and has a redshift, sensitivity increases, and the resonance valley becomes more unobvious with a fixed gold film thickness. Similarly, when gold film thickness increases, the dynamic range of the resonance wavelength increases and has a redshift, sensitivity increases, and the resonance valley becomes more unobvious with a fixed grinding angle. These adjusting performance aforementioned lay the foundation for solving of the fiber-based SPR multichannel detection and increasing of the fiber-based SPR sensor sensitivity, which has a good application value.

Details

Sensor Review, vol. 39 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 22 June 2012

M. Yasin, H.A. Rahman, N. Bidin, S.W. Harun and H. Ahmad

The purpose of this paper is to demonstrate a simple design of a fiber optic displacement sensor using a multimode plastic fiber coupler based on reflective intensity modulation…

Abstract

Purpose

The purpose of this paper is to demonstrate a simple design of a fiber optic displacement sensor using a multimode plastic fiber coupler based on reflective intensity modulation technique.

Design/methodology/approach

The performances of this sensor are investigated by correlating the detector output with different light sources, coupling ratios and various real objects with different reflectivity properties namely aluminum, brass and copper. In contrast to the output profile produced by probes with multiple fibers placed adjacently together, this sensor uses only one fiber for sending and receiving the light and therefore only the back slope exists.

Findings

Aluminum exhibit the highest performance among the real objects when coupled with a red He‐Ne laser and a coupling ratio of 50:50 with a sensitivity, linear range, resolution and dynamic range of 1.7 mV/mm, 1.5 mm, 16 μm, and 5.0 mm, respectively.

Originality/value

This is the first demonstration of a fiber optic displacement sensor using fiber coupler probe with successful examination of the correlation between the detector output, variation in coupling ratios and reflectivity properties of the tested real objects.

Details

Sensor Review, vol. 32 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 327