To read this content please select one of the options below:

Utilizing multimode interference effects in integrated graded-index optical waveguides for efficient power splitting

Jan-Philipp Roth (Institute for Theoretical Electrical Engineering and Photonics,University of Siegen, Siegen, Germany)
Thomas Kühler (Institute for Theoretical Electrical Engineering and Photonics,University of Siegen, Siegen, Germany)
Elmar Griese (Institute for Theoretical Electrical Engineering and Photonics,University of Siegen, Siegen, Germany)

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering

ISSN: 0332-1649

Article publication date: 13 August 2018

Issue publication date: 16 October 2018

111

Abstract

Purpose

For the realization of optical waveguide components, needed for photonic integrated circuits, multimode-interference based (MMI-based) devices are an excellent component class for the realization of low loss optical splitters. A promising approach to the manufacturing of these components is their embedding in thin glass sheets by ion-exchange diffusion processes, which has not yet been extensively studied. This study aims to significantly enhance the modeling of the diffusion process to support manufacturing of graded-index, MMI-based optical splitters.

Design/methodology/approach

The methods of design and analysis of MMI-based components are based on a step-index refractive index profile. In this work, fundamental correlations between the properties of the manufacturing ion-exchange process and the characteristics of the graded-index, MMI-based components are established. The refractive index profile is calculated with a proprietary solver based on the finite element method. Any further investigation with respect to parameter influence is based on the beam propagation method, specifically a finite difference based, semi-vectorial, wide-angle beam propagation algorithm. The influence of the parameters of the self-imaging effect is investigated. On this basis, different approaches for efficient power splitting with graded-index, MMI-based waveguide components are evaluated.

Findings

Easy approximations – mostly linear – can be found to model the dependencies of the investigated parameters. The resulting graded-index splitters are characterized by their low excess and insertion loss.

Originality/value

These findings are the first step in the direction of the semi-analytical modeling of the respective waveguide components to reduce the numerical effort.

Keywords

Citation

Roth, J.-P., Kühler, T. and Griese, E. (2018), "Utilizing multimode interference effects in integrated graded-index optical waveguides for efficient power splitting", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 37 No. 4, pp. 1556-1563. https://doi.org/10.1108/COMPEL-09-2017-0374

Publisher

:

Emerald Publishing Limited

Copyright © 2018, Emerald Publishing Limited

Related articles