Search results

1 – 10 of 139
Article
Publication date: 13 August 2018

Jan-Philipp Roth, Thomas Kühler and Elmar Griese

For the realization of optical waveguide components, needed for photonic integrated circuits, multimode-interference based (MMI-based) devices are an excellent component class for…

Abstract

Purpose

For the realization of optical waveguide components, needed for photonic integrated circuits, multimode-interference based (MMI-based) devices are an excellent component class for the realization of low loss optical splitters. A promising approach to the manufacturing of these components is their embedding in thin glass sheets by ion-exchange diffusion processes, which has not yet been extensively studied. This study aims to significantly enhance the modeling of the diffusion process to support manufacturing of graded-index, MMI-based optical splitters.

Design/methodology/approach

The methods of design and analysis of MMI-based components are based on a step-index refractive index profile. In this work, fundamental correlations between the properties of the manufacturing ion-exchange process and the characteristics of the graded-index, MMI-based components are established. The refractive index profile is calculated with a proprietary solver based on the finite element method. Any further investigation with respect to parameter influence is based on the beam propagation method, specifically a finite difference based, semi-vectorial, wide-angle beam propagation algorithm. The influence of the parameters of the self-imaging effect is investigated. On this basis, different approaches for efficient power splitting with graded-index, MMI-based waveguide components are evaluated.

Findings

Easy approximations – mostly linear – can be found to model the dependencies of the investigated parameters. The resulting graded-index splitters are characterized by their low excess and insertion loss.

Originality/value

These findings are the first step in the direction of the semi-analytical modeling of the respective waveguide components to reduce the numerical effort.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Article
Publication date: 1 March 1999

49

Abstract

Details

Sensor Review, vol. 19 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 4 September 2019

Jehangir Dar

The purpose of this paper is to describe the first and novel beam splitting day-lighting system possessing highest possible solar transmission efficiency to provide illumination…

Abstract

Purpose

The purpose of this paper is to describe the first and novel beam splitting day-lighting system possessing highest possible solar transmission efficiency to provide illumination to the core and underground areas of any structure/building.

Design/methodology/approach

In this system, by using a number of individually pointable thin and light optical elements mounted on a top of structure/building, the solar light is concentrated. The concentrated beam is focussed to a secondary reflecting element which directs it to a beam splitter while passing through a Fresnel lens and a horizontal solar pipe. The beam splitter located inside the structure/building splits the solar beam into a number of secondary beams using a special arrangement of a number of inbuilt light guiding optical elements inside the beam splitter. The beam splitter produces a desired number of beams which are then redirected to the beam diffusers with the help of the solar pipe and the solar pipe joint which deflects the light at the angle of 90°.

Findings

The system considers the use of highly sophisticated and the highly efficient optical elements so that to attain the highest possible end-to-end efficiency of the system. The system has the highest potential to transport the solar energy to larger distances than all the available day-lighting systems and possesses the potential to be used for underground human colonisation.

Research limitations/implications

The widespread adoption of such a system could substantially reduce energy consumption worldwide, which would contribute to bring down the increasing slope in the graph of greenhouse gases.

Originality/value

The paper presents the novel beam splitting day-lighting system.

Details

Smart and Sustainable Built Environment, vol. 9 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 27 March 2009

Anas N. Al‐Rabadi

The purpose of this paper is to introduce an approach for m‐valued classical and non‐classical (reversible and quantum) optical computing. The developed approach utilizes new…

Abstract

Purpose

The purpose of this paper is to introduce an approach for m‐valued classical and non‐classical (reversible and quantum) optical computing. The developed approach utilizes new multiplexer‐based optical devices and circuits within switch logic to perform the required optical computing. The implementation of the new optical devices and circuits in the optical regular logic synthesis using new lattice and systolic architectures is introduced, and the extensions to quantum optical computing are also presented.

Design/methodology/approach

The new linear optical circuits and systems utilize coherent light beams to perform the functionality of the basic logic multiplexer. The 2‐to‐1 multiplexer is a basic building block in switch logic, where in switch logic a logic circuit is implemented as a combination of switches rather than a combination of logic gates as in the gate logic, which proves to be less‐costly in synthesizing wide variety of logic circuits and systems. The extensions to quantum optical computing using photon spins and the collision of Manakov solitons are also presented.

Findings

New circuits for the optical realizations of m‐valued classical and reversible logic functions are introduced. Optical computing extensions to linear quantum computing using photon spins and nonlinear quantum computing using Manakov solitons are also presented. Three new multiplexer‐based linear optical devices are introduced that utilize the properties of frequency, polarization and incident angle that are associated with any light‐matter interaction. The hierarchical implementation of the new optical primitives is used to synthesize regular optical reversible circuits such as the m‐valued regular optical reversible lattice and systolic circuits. The concept of parallel optical processing of an array of input laser beams using the new multiplexer‐based optical devices is also introduced. The design of regular quantum optical systems using regular quantum lattice and systolic circuits is introduced. New graph‐based quantum optical representations using various types of quantum decision trees are also presented to efficiently represent quantum optical circuits and systems.

Originality/value

The introduced methods for classical and non‐classical (reversible and quantum) optical regular circuits and systems are new and interesting for the design of several future technologies that require optimal design specifications such as super‐high speed, minimum power consumption and minimum size such as in quantum computing and nanotechnology.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 21 August 2009

Anas N. Al‐Rabadi

The purpose of this paper is to introduce new non‐classical implementations of neural networks (NNs). The developed implementations are performed in the quantum, nano, and optical

Abstract

Purpose

The purpose of this paper is to introduce new non‐classical implementations of neural networks (NNs). The developed implementations are performed in the quantum, nano, and optical domains to perform the required neural computing. The various implementations of the new NNs utilizing the introduced architectures are presented, and their extensions for the utilization in the non‐classical neural‐systolic networks are also introduced.

Design/methodology/approach

The introduced neural circuits utilize recent findings in the quantum, nano, and optical fields to implement the functionality of the basic NN. This includes the techniques of many‐valued quantum computing (MVQC), carbon nanotubes (CNT), and linear optics. The extensions of implementations to non‐classical neural‐systolic networks using the introduced neural‐systolic architectures are also presented.

Findings

Novel NN implementations are introduced in this paper. NN implementation using the general scheme of MVQC is presented. The proposed method uses the many‐valued quantum orthonormal computational basis states to implement such computations. Physical implementation of quantum computing (QC) is performed by controlling the potential to yield specific wavefunction as a result of solving the Schrödinger equation that governs the dynamics in the quantum domain. The CNT‐based implementation of logic NNs is also introduced. New implementations of logic NNs are also introduced that utilize new linear optical circuits which use coherent light beams to perform the functionality of the basic logic multiplexer by utilizing the properties of frequency, polarization, and incident angle. The implementations of non‐classical neural‐systolic networks using the introduced quantum, nano, and optical neural architectures are also presented.

Originality/value

The introduced NN implementations form new important directions in the NN realizations using the newly emerging technologies. Since the new quantum and optical implementations have the advantages of very high‐speed and low‐power consumption, and the nano implementation exists in very compact space where CNT‐based field effect transistor switches reliably using much less power than a silicon‐based device, the introduced implementations for non‐classical neural computation are new and interesting for the design in future technologies that require the optimal design specifications of super‐high speed, minimum power consumption, and minimum size, such as in low‐power control of autonomous robots, adiabatic low‐power very‐large‐scale integration circuit design for signal processing applications, QC, and nanotechnology.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 9 July 2019

Igor S. Nadezhdin, Aleksey G. Goryunov and Yuliya Yu Nadezhdina

This paper aims to focus on the development of an optical concentration sensor designed for measuring the concentration of components in solutions.

Abstract

Purpose

This paper aims to focus on the development of an optical concentration sensor designed for measuring the concentration of components in solutions.

Design/methodology/approach

The operating principle of the developed sensor is based on the Bouguer–Lambert–Beer law. An optical measuring system using fiber optical cables was used for the practical implementation of the concentration sensor.

Findings

As a result of fiber optical cable use in the concentration sensor, the remote measurement principle was implemented, ensuring the instrument’s reliability and the reduction of operating costs.

Originality/value

The advantage of the proposed measuring system is that the sensitive element is maintenance-free, does not require power supply and can operate under severe industrial conditions. Using a fiber optic cable to transmit a light signal allows placing the sensitive element at a distance of several tens of meters from the electronics unit (the smart part).

Details

Sensor Review, vol. 39 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 April 1996

I.P. Hall

The drive towards low unit cost in optoelectronic packaging is assisted by avoiding the need for hermeticity and by the use of simple assembly techniques. Silicone gels can solve…

234

Abstract

The drive towards low unit cost in optoelectronic packaging is assisted by avoiding the need for hermeticity and by the use of simple assembly techniques. Silicone gels can solve this problem, provided the reliability meets the application requirements. Extensive lifetest data for semiconductor lasers and PIN photodiodes coated in silicone gels are reported in this paper. Results to date show great promise and promote confidence in the use of these materials for the environmental protection of optoelectronic devices. Apart from silicone gels, light cured resin materials can also offer benefits towards lower cost assembly processes. Tests are reported of the degradation in optical transmission of these resins and also bulk degradation under differing environmental conditions. The use of these polymer materials can play an integral part in low‐cost optoelectronic packaging developments, two specific designs of which — a silicon laser optical bench and a ceramic ferrule co‐axial structure — will be described. Both of these packages take advantage of a passive fibre/device alignment allowed by the use of an expanded beam laser design.

Details

Microelectronics International, vol. 13 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 September 1996

Allen Mabbitt and Andrew Parker

Notes the advantages of the use of LED sources in the detection of flammable gases, suggesting they contribute towards factors such as high sensitivity and low power consumption…

320

Abstract

Notes the advantages of the use of LED sources in the detection of flammable gases, suggesting they contribute towards factors such as high sensitivity and low power consumption. Focuses on two detection techniques: the gas correlation optical system and the filtered gas detection technique. Looks at the operation of LED sources in relation to these techniques and the development of 3.3 and 4.3 micron LED sources. Notes the results of tests on such LED sources, asserting the feasibility of a low power consumption, LED‐based detection system.

Details

Sensor Review, vol. 16 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 January 1990

G. Hanke

An expert gives a tutorial guide to optoelectronics measurement practice in industrial production.

Abstract

An expert gives a tutorial guide to optoelectronics measurement practice in industrial production.

Details

Sensor Review, vol. 10 no. 1
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 1 May 2003

G. Stewart, B. Culshaw, W. Johnstone, G. Whitenett, K. Atherton and A. McLean

Describes the author's work on the development of fibre sensors and networks for monitoring trace gases such as methane, acetylene, carbon dioxide, carbon monoxide, hydrogen…

Abstract

Describes the author's work on the development of fibre sensors and networks for monitoring trace gases such as methane, acetylene, carbon dioxide, carbon monoxide, hydrogen sulphide and for detection of spills of gasoline, diesel and organic solvents, all of which are important in environmental and safety management. As an example, a 45‐point fibre optic sensor network has been installed on a landfill site to assess the distribution of methane generation across the site. System operation is based on near‐IR absorption and is currently being extended to monitor other gases such as carbon dioxide and hydrogen sulphide. Concurrently, research is being conducted on fibre lasers for the realisation of multi‐point, multi‐gas monitoring systems. Based on other principles (periodic micro‐bending loss effects), detection of hydrocarbon fuel spills has been demonstrated at multiple locations along the length of a specially designed fibre optic cable using standard optical time domain reflectometry (OTDR) measurements.

Details

Management of Environmental Quality: An International Journal, vol. 14 no. 2
Type: Research Article
ISSN: 1477-7835

Keywords

1 – 10 of 139