Search results

1 – 10 of 254
Article
Publication date: 1 June 2022

Tran Thuc, Tran Thanh Thuy and Huynh Thi Lan Huong

This paper aims to develop a multi-hazard risk assessment method based on probability theory and a set of economic, social and environmental indicators, which considers the…

Abstract

Purpose

This paper aims to develop a multi-hazard risk assessment method based on probability theory and a set of economic, social and environmental indicators, which considers the increase in hazards when they occur concurrently or consecutively.

Design/methodology/approach

Disaster risk assessment generally considers the impact and vulnerability of a single hazard to the affected location/object without considering the combination of multiple hazards occurring concurrently or consecutively. However, disasters are often closely related, occurring in combination or at the same time. Probability theory was used to assess multi-hazard, and a matrix method was used to assess the interaction of hazard vulnerabilities.

Findings

The results of the case study for the Mid-Central Coastal Region show that the proportions of districts at a very high class of multi-hazard, multi-vulnerabilities and multi-hazard risk are 81%, 89% and 82%, respectively. Multi-hazard risk level tends to decrease from North to South and from East to West. A total of 100% of coastal districts are at high to very high multi-hazard risk classes. The research results could assist in the development of disaster risk reduction programs towards sustainable development and support the management to reduce risks caused by multi-hazard.

Originality/value

The multi-risk assessment method developed in this study is based on published literature, allowing to compare quantitatively multiple risk caused by multi-hazard occurring concurrently or consecutively, in which, a relative increase in hazard and vulnerability is considered. The method includes the assessment of three components of disaster risk including multi-hazard, exposure and multi-vulnerability. Probability and Copula theories were used to assess multi-hazard, and a matrix method was used to assess the interaction intensity of multi-vulnerabilities in the system.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 14 no. 3
Type: Research Article
ISSN: 1759-5908

Keywords

Open Access
Article
Publication date: 2 February 2023

Chiara Bertolin and Elena Sesana

The overall objective of this study is envisaged to provide decision makers with actionable insights and access to multi-risk maps for the most in-danger stave churches (SCs…

1415

Abstract

Purpose

The overall objective of this study is envisaged to provide decision makers with actionable insights and access to multi-risk maps for the most in-danger stave churches (SCs) among the existing 28 churches at high spatial resolution to better understand, reduce and mitigate single- and multi-risk. In addition, the present contribution aims to provide decision makers with some information to face the exacerbation of the risk caused by the expected climate change.

Design/methodology/approach

Material and data collection started with the consultation of the available literature related to: (1) SCs' conservation status, (2) available methodologies suitable in multi-hazard approach and (3) vulnerability leading indicators to consider when dealing with the impact of natural hazards specifically on immovable cultural heritage.

Findings

The paper contributes to a better understanding of place-based vulnerability with local mapping dimension also considering future threats posed by climate change. The results highlight the danger at which the SCs of Røldal, in case of floods, and of Ringebu, Torpo and Øye, in case of landslide, may face and stress the urgency of increasing awareness and preparedness on these potential hazards.

Originality/value

The contribution for the first time aims to homogeneously collect and report all together existing spread information on architectural features, conservation status and geographical attributes for the whole group of SCs by accompanying this information with as much as possible complete 2D sections collection from existing drawings and novel 3D drawn sketches created for this contribution. Then the paper contributes to a better understanding of place-based vulnerability with local mapping dimension also considering future threats posed by climate change. Then it highlights the danger of floods and landslides at which the 28 SCs are subjected. Finally it reports how these risks will change under the ongoing impact of climate change.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 11 April 2016

Nadejda Komendantova, Anna Scolobig, Alexander Garcia-Aristizabal, Daniel Monfort and Kevin Fleming

Urban resilience is becoming increasingly important due to increasing degree of urbanization and a combination of several factors affecting urban vulnerability. Urban resilience…

Abstract

Purpose

Urban resilience is becoming increasingly important due to increasing degree of urbanization and a combination of several factors affecting urban vulnerability. Urban resilience is also understood as a capacity of a system to prepare, respond and recover from multi-hazard threats. The purpose of multi-risk approach (MRA) is to take into consideration interdependencies between multiple risks, which can trigger a chain of natural and manmade events with different spatial and temporal scales. The purpose of this study is to understand correlation between multi-risk approach and urban resilience.

Design/methodology/approach

To increase urban resilience, MRA should also include multi-risk governance, which is based on understanding how existing institutional and governance structures, individual judgments and communication of risk assessment results shape decision-making processes.

Findings

This paper is based on extensive fieldwork in the test studies of Naples, Italy and Guadeloupe, France, the historical case study analysis and the stakeholders’ interviews, workshops and focus groups discussions.

Originality/value

Multi-risk is a relatively new field in science, only partially developed in social and geosciences. The originality of this research is in establishment of a link between MRA, including both assessment and governance, and urban resilience. In this paper, the authors take a holistic and systemic look at the MRA, including all stages of knowledge generation and decision-making. Both, knowledge generation and decision-making are reinforced by behavioural biases, different perceptions and institutional factors. Further on, the authors develop recommendations on how an MRA can contribute to urban resilience.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 7 no. 2
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 7 October 2019

Mario Ordaz, Mario Andrés Salgado-Gálvez, Benjamín Huerta, Juan Carlos Rodríguez and Carlos Avelar

The development of multi-hazard risk assessment frameworks has gained momentum in the recent past. Nevertheless, the common practice with openly available risk data sets, such as…

Abstract

Purpose

The development of multi-hazard risk assessment frameworks has gained momentum in the recent past. Nevertheless, the common practice with openly available risk data sets, such as the ones derived from the United Nations Office for Disaster Risk Reduction Global Risk Model, has been to assess risk individually for each peril and afterwards aggregate, when possible, the results. Although this approach is sufficient for perils that do not have any interaction between them, for the cases where such interaction exists, and losses can be assumed to occur simultaneously, there may be underestimation of losses. The paper aims to discuss these issues.

Design/methodology/approach

This paper summarizes a methodology to integrate simultaneous losses caused by earthquakes and tsunamis, with a peril-agnostic approach that can be expanded to other hazards. The methodology is applied in two relevant locations in Latin America, Acapulco (Mexico) and Callao (Peru), considering in each case building by building exposure databases with portfolios of different characteristics, where the results obtained with the proposed approach are compared against those obtained after the direct aggregation of individual losses.

Findings

The fully probabilistic risk assessment framework used herein is the same of the global risk model but applied at a much higher resolution level of the hazard and exposure data sets, showing its scalability characteristics and the opportunities to refine certain inputs to move forward into decision-making activities related to disaster risk management and reduction.

Originality/value

This paper applies for the first time the proposed methodology in a high-resolution multi-hazard risk assessment for earthquake and tsunami in two major coastal cities in Latin America.

Details

Disaster Prevention and Management: An International Journal, vol. 28 no. 6
Type: Research Article
ISSN: 0965-3562

Keywords

Book part
Publication date: 25 April 2022

Muhammad Wafiy Adli Ramli, Nor Eliza Binti Alias, Zulkifli bin Yusop and Shazwin Mat Taib

This chapter reviews and compares Southeast Asia country practices on global, regional, and local practices for disaster risk assessment (DRA). DRA research and practices include

Abstract

This chapter reviews and compares Southeast Asia country practices on global, regional, and local practices for disaster risk assessment (DRA). DRA research and practices include and create a disaster risk management (DRM) solution. There are 11 countries in Southeast Asia, but only 10 countries are members of the Association of Southeast Asian Nations (ASEAN), except Timor-Leste. The key objective of ASEAN’s formation is cooperation in economic growth, social, regional peace and cultural development, disaster management cooperation, and humanitarian assistance at the regional level. The DRM system practiced in ASEAN member countries is discussed in this chapter. Furthermore, the system and findings of DRAs are also addressed. Globally, two DRA structures are discussed and compared, namely Index of Risk Management (INFORM) and World Risk Index (WRI). In addition, regional vulnerability assessment guidelines for regional and national levels are discussed. However, several selected studies and practices such as the Indonesian Risk Index (InaRISK) are being discussed at the local level. Overall, there is space for improvement of coordination in terms of data and technology sharing for DRM, especially for assessment. The finding of this review highlighted the complexity of DRA at the global and regional levels and encouraging community DRA among the ASEAN members.

Article
Publication date: 27 November 2019

Michael Petterson, Sonam Wangchuk and Norgay Konchok

This paper places a college at the centreof a multi-hazard assessment (earthquake, flood and landslide). The college is within a less studied, rural area of Ladakh, North India…

Abstract

Purpose

This paper places a college at the centreof a multi-hazard assessment (earthquake, flood and landslide). The college is within a less studied, rural area of Ladakh, North India. Research focusses on a case study (Students Educational and Cultural Movement of Ladakh (SECMOL) College), close to Leh, Ladakh, and extends to incorporate/apply thinking from/to the wider Ladakh region. The approach adopted, centring on the hazard assessment of a single entity/local area, allows a rapid uptake of hazard recommendations within a college environment planning to continue its existence for decades ahead. A sister paper (Petterson et al., 2019) documents the active involvement of college staff and students in the principles of geohazard assessment and the development of student-centric hazard assessments of the college and their home village. SECMOL is a self-sufficient, alternative, college, organised along strong environmentally sustainable principles. The paper aims to discuss these issues.

Design/methodology/approach

This work has adopted different strategies for different hazards. Fieldwork involved the collection of quantitative and qualitative data (e.g. shape and size of valleys/river channels/valley sides, estimation of vegetation density, measurement of sediment clasts, angle of slopes, assessment of sediment character, stratigraphy of floodplains and identification of vulnerable elements). These data were combined with satellite image analysis to: define river catchment character and flood vulnerability (e.g. using the methodology of Collier and Fox, 2003), examine catchment connectivity, and examine landslip scars and generic terrain analysis. Literature studies and seismic database interrogation allowed the calculation of potential catchment floodwater volumes, and the collation of epicentre, magnitude, depth and date of seismic events, together with recent thinking on the return period of large Himalayan earthquakes. These data were used to develop geological-seismic and river catchment maps, the identification of vulnerable elements, and disaster scenario analyses.

Findings

This research concludes that SECMOL, and much of the Ladakh region, is exposed to significant seismic, flood and landslide hazard risk. High magnitude earthquakes have return periods of 100s to c. 1,000 years in the Himalayas and can produce intense levels of damage. It is prudent to maximise earthquake engineering wherever possible. The 2010 Leh floods demonstrated high levels of devastation: these floods could severely damage the SECMOL campus if storms were centred close by. This study reveals the connectivity of catchments at varying altitudes and the potential interactions of adjacent catchments. Evacuation plans need to be developed for the college. Northern ridges at SECMOL could bury parts of the campus if mobilised by earthquakes/rainfall. Slope angles can be lowered and large boulders moved to reduce risk. This work reinforces recommendations that relate to building quality and urban/rural planning, e.g. using spatial planning to keep people away from high-risk zones.

Practical implications

The frequency of hazards is low, but potential impacts high to very high. Hazard mitigation actions include engineering options for hazardous slopes, buildings to be earthquake-proofed, and evacuation management for large floods.

Originality/value

Methodologies undertaken in this research are well-tested. Linkages between disciplines are ambitious and somewhat original. The application of this work to a specific college centre site with the capacity to rapidly take up recommendations is novel. The identification of catchment inter-connectivity in this part of Ladakh is novel. This work complements a sister paper (Petterson et al., 2019) for community aspects of this study, adding to the novelty value.

Details

Disaster Prevention and Management: An International Journal, vol. 29 no. 3
Type: Research Article
ISSN: 0965-3562

Keywords

Open Access
Article
Publication date: 5 November 2018

Dilanthi Amaratunga, Chamindi Ishara Malalgoda and Kaushal Keraminiyage

Construction industry and the built environment professions play an important role in contributing to society’s improved resilience. It is therefore important to improve their…

2899

Abstract

Purpose

Construction industry and the built environment professions play an important role in contributing to society’s improved resilience. It is therefore important to improve their knowledgebase to strengthen their capacities. This paper aims to identify gaps in the knowledgebase of construction professionals that are undermining their ability to contribute to the development of a more disaster resilient society. The paper also provides a series of recommendations to key actors in the built environment on how to more effectively mainstream disaster resilience in the construction process.

Design/methodology/approach

The paper reports the findings of 87 stakeholder interviews with: national and local government organisations; the community; non-governmental organisations, international non-governmental organisation and other international agencies; academia and research organisations; and the private sector, which were supplemented by a comprehensive analysis of key policies related to disaster resilience and management. The findings were validated using focus group discussions that were conducted as part of six organised stakeholder workshops.

Findings

The primary and secondary data generated a long list of needs and skills. Finally, the identified needs and skills were combined “like-for-like” to produce broader knowledge gaps. Some of the key knowledge gaps identified are: governance, legal frameworks and compliance; business continuity management; disaster response; contracts and procurement; resilience technologies, engineering and infrastructure; knowledge management; social and cultural awareness; sustainability and resilience; ethics and human rights; innovative financing mechanisms; multi stakeholder approach, inclusion and empowerment; post disaster project management; and multi hazard risk assessment. The study also identifies a series of recommendations to key actors in the built environment on how to more effectively mainstream disaster resilience in the construction process. The recommendations are set out in five key themes: education, policy, practice, research and cross-cutting.

Research limitations/implications

This study is part of an EU funded research project that is seeking to develop innovative and timely professional education that will update the knowledge and skills of construction professionals in the industry and enable them to contribute more effectively to disaster resilience building efforts.

Originality/value

The paper provides an extensive analysis of the gaps in the knowledgebase of construction professionals that are undermining their ability to contribute to the development of a more disaster resilient society. Accordingly, the paper recommends major changes in construction education, research, policy and practice with respect to mainstreaming disaster resilience within the construction process.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 9 no. 4/5
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 11 April 2016

Richard Murnane, Alanna Simpson and Brenden Jongman

Understanding risk is more than just modeling risk; it requires an understanding of the development and social processes that underlie and drive the generation of disaster risk

1686

Abstract

Purpose

Understanding risk is more than just modeling risk; it requires an understanding of the development and social processes that underlie and drive the generation of disaster risk. Here, in addition to a review of more technical factors, this paper aims to discuss a variety of institutional, social and political considerations that must be managed for the results of a risk assessment to influence actions that lead to reductions in natural hazard risk.

Design/methodology/approach

The technical approaches and the institutional, social and political considerations covered in this paper are based on a wide range of experiences gleaned from case studies that touch on a variety of activities related to assessing the risks and impacts of natural hazards, and from the activities of the World Bank’s Global Facility for Disaster Reduction and Recovery.

Findings

Risk information provides a critical foundation for managing disaster risk across a wide range of sectors. Appropriate communication of robust risk information at the right time can raise awareness and trigger action to reduce risk. Communicating this information in a way that triggers action requires an understanding of the developments and social processes that underlie and drive the generation of risk, as well as of the wider Disaster Risk Management (DRM) decision-making context.

Practical implications

Prior to the initiation of a quantitative risk assessment one should clearly define why an assessment is needed and wanted, the information gaps that currently prevent effective DRM actions and the end-users of the risk information. This requires developing trust through communication among the scientists and engineers performing the risk assessment and the decision-makers, authorities, communities and other intended users of the information developed through the assessment.

Originality/value

This paper summarizes the technical components of a risk assessment as well as the institutional, social and political considerations that should be considered to maximize the probability of successfully reducing the risk defined by a risk assessment.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 7 no. 2
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 12 April 2022

Shivani Chouhan, Aishwarya Narang and Mahua Mukherjee

In the event of a disaster, educational institutions like schools serve as lifeline buildings. Hence, it is crucial to safeguard these buildings for the communities that may…

Abstract

Purpose

In the event of a disaster, educational institutions like schools serve as lifeline buildings. Hence, it is crucial to safeguard these buildings for the communities that may depend on the school as a disaster shelter and aid center. Thus, this paper aims to conduct a multihazard risk assessment survey at 50 schools (with 246 building blocks) in Dehradun.

Design methodology approach

The past few decades have witnessed the impact of multihazard frequency in Uttarakhand, India, due to the geographical features of the Himalayas and its neo-tectonic mountain-building process. Dehradun is the capital of Uttarakhand state and comes under seismic zone IV, which is highly prone to earthquakes.

Findings

The hazard assessment is divided into two types of surveys: first, building-level surveys that include rapid visual screening, nonstructural risk assessment and fire safety audit, and second, campus-level surveys that include vulnerability analysis for earthquake, flood, industrial hazard, landslide and wind.

Social implications

This paper will list several gaps and unrecognized practices in the region that increase the schools’ multihazard risk. The study’s outcome will help prioritize the planning of disaster awareness, retrofitting execution, future construction practices and decision-making to minimize the risk and prepare the school for the upcoming disasters.

Originality value

Physical data were collected by the author to determine the multihazard risk analysis in 50 schools in the Dehradun District of Uttarakhand, India. The building- and campus-level surveys have been used to generate a database for the retrofit and renovation process for each individual school to use their budget fruitfully and in a planned way. The survey conducted is more effort and a more detailed risk evaluation which necessitates effectively mitigating and ensuring the potential safety of the region’s schools.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 15 no. 1
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 27 November 2019

Michael Petterson, Lanka Nanayakkara, Norgay Konchok, Rebecca Norman, Sonam Wangchuk and Malin Linderoth

The purpose of this paper is to apply the concept of “Interconnected Geoscience” to a disaster and risk reduction (DRR) case study at SECMOL College, near Leh, Ladakh, N. India…

Abstract

Purpose

The purpose of this paper is to apply the concept of “Interconnected Geoscience” to a disaster and risk reduction (DRR) case study at SECMOL College, near Leh, Ladakh, N. India. Interconnected geoscience is a model that advocates holistic approaches to geoscience for development. This paper reports research/practical work with Ladakhi students/staff, undertaking community-oriented DRR exercises in hazard awareness, DRR themed village/college mapping, vulnerability assessments and DRR management scenario development. The geoscientific hazard analysis work is published within a separate sister paper, with results feeding into this work. This work addresses aspects of, and contributes to, the DRR research(science)-policy-interface conversation.

Design/methodology/approach

Interconnected geoscience methodologies for DRR here are: the application of geoscience for hazard causality, spatial distribution, frequency and impact assessment, for earthquakes, floods and landslides, within the SECMOL area; the generation of community-developed DRR products and services of use to a range of end-users; the development of a contextual geoscience approach, informed by social-developmental-issues; and the active participation of SECMOL students/teachers and consequent integration of local world-views and wisdom within DRR research. Initial DRR awareness levels of students were assessed with respect to earthquakes/floods/landslides/droughts. Following hazard teaching sessions, students engaged in a range of DRR exercises, and produced DRR themed maps, data, tables and documented conversations of relevance to DRR management.

Findings

Students levels of hazard awareness were variable, generally low for low-frequency hazards (e.g. earthquakes) and higher for hazards such as floods/landslides which either are within recent memory, or have higher frequencies. The 2010 Ladakhi flood disaster has elevated aspects of flood-hazard knowledge. Landslides and drought hazards were moderately well understood. Spatial awareness was identified as a strength. The application of an interconnected geoscience approach immersed within a student+staff college community, proved to be effective, and can rapidly assess/build upon awareness levels and develop analytical tools for the further understanding of DRR management. This approach can assist Ladakhi regional DRR management in increasing the use of regional capability/resources, and reducing the need for external inputs.

Practical implications

A series of recommendations for the DRR geoscience/research-policy-practice area include: adopting an “interconnected geoscience” approach to DRR research, involving scientific inputs to DRR; using and developing local capability and resources for Ladakhi DRR policy and practice; using/further-developing DRR exercises presented in this paper, to integrate science with communities, and further-empower communities; taking account of the findings that hazard awareness is variable, and weak, for potentially catastrophic hazards, such as earthquakes, when designing policy and practice for raising DRR community awareness; ensuring that local values/world views/wisdom inform all DRR research, and encouraging external “experts” to carefully consider these aspects within Ladakh-based DRR work; and further-developing DRR networks across Ladakh that include pockets of expertise such as SECMOL.

Originality/value

The term “interconnected geoscience” is highly novel, further developing thinking within the research/science-policy-practice interface. This is the first time an exercise such as this has been undertaken in the Ladakh Himalaya.

Details

Disaster Prevention and Management: An International Journal, vol. 29 no. 3
Type: Research Article
ISSN: 0965-3562

Keywords

1 – 10 of 254