Search results

1 – 10 of over 1000
Article
Publication date: 4 January 2016

Xiayu Zheng, Yuhua Wang and Dongfang Lu

The purpose of this paper is to model the particle capture of elliptic magnetic matrices for parallel stream type high magnetic separation, which can be a guidance for the…

179

Abstract

Purpose

The purpose of this paper is to model the particle capture of elliptic magnetic matrices for parallel stream type high magnetic separation, which can be a guidance for the development of novel elliptic cylinder matrices for high-gradient magnetic separation (HGMS).

Design/methodology/approach

The magnetic field distribution around the elliptic matrices is investigated quantitatively and the magnetic field and gradient were calculated. The motion equations of the magnetic particles around the matrices were derived and the particle capture cross-section of elliptic matrices was studied and was compared with that of the conventional circular matrices.

Findings

Elliptic matrices can present larger particle capture cross-section than the conventional circular matrices and can be a kind of promising matrices to be applied to HGMS.

Originality/value

There is little literature investigating the magnetic characteristics and the particle capture of the elliptic matrices in HGMS, the study is of great significance for the development of novel elliptic magnetic matrices in HGMS.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 22 December 2023

Priyadharsini Sivaraj and Sivaraj Chinnasamy

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both…

Abstract

Purpose

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both isothermal and capable of producing heat. A time-dependent non-linear partial differential equation is used to represent the transfer of heat through a solid body. The current study’s objective is to investigate the key properties of nanoparticles, external forces and particular attention paid to the impact of hybrid nanoparticles on entropy formation. This investigation is useful for researchers studying in the area of cavity flows to know features of the flow structures and nature of hybrid nanofluid characteristics. In addition, a detailed entropy generation analysis has been performed to highlight possible regimes with minimal entropy generation rates. Hybrid nanofluid has been proven to have useful qualities, making it an attractive coolant for an electrical device. The findings would help scientists and engineers better understand how to analyse convective heat transmission and how to forecast better heat transfer rates in cutting-edge technological systems used in industries such as heat transportation, power generation, chemical production and passive cooling systems for electronic devices.

Design/methodology/approach

Thermal transmission and entropy generation of hybrid nanofluid are analysed within the enclosure. The domain of interest is a square chamber of size L, including a square solid block. The solid body is considered to be isothermal and generating heat. The flow driven by temperature gradient in the cavity is two-dimensional. The governing equations, formulated in dimensionless primitive variables with corresponding initial and boundary conditions, are worked out by using the finite volume technique with the SIMPLE algorithm on a uniformly staggered mesh. QUICK and central difference schemes were used to handle convective and diffusive elements. In-house code is developed using FORTRAN programming to visualize the isotherms, streamlines, heatlines and entropy contours, which are handled by Tecplot software. The influence of nanoparticles volume fraction, heat generation factor, external magnetic forces and an irreversibility ratio on energy transport and flow patterns is examined.

Findings

The results show that the hybrid nanoparticles concentration augments the thermal transmission and the entropy production increases also while the augmentation of temperature difference results in a diminution of entropy production. Finally, magnetic force has the significant impact on heat transfer, isotherms, streamlines and entropy. It has been observed that the external magnetic force plays a good role in thermal regulations.

Research limitations/implications

Hybrid nanofluid is a desirable coolant for an electrical device. Various nanoparticles and their combinations can be analysed. Ferro-copper hybrid nanofluid considered with the help of prevailing literature review. The research would benefit scientists and engineers by improving their comprehension of how to analyses convective heat transmission and forecast more accurate heat transfer rates in various fields.

Practical implications

Due to its helpful characteristics, ferrous-copper hybrid nanofluid is a desirable coolant for an electrical device. The research would benefit scientists and engineers by improving their comprehension of how to analyse convective heat transmission and forecast more accurate heat transfer rates in cutting-edge technological systems used in sectors like thermal transportation, cooling systems for electronic devices, etc.

Social implications

Entropy generation is used for an evaluation of the system’s performance, which is an indicator of optimal design. Hence, in recent times, it does a good engineering sense to draw attention to irreversibility under magnetic force, and it has an indispensable impact on investigation of electronic devices.

Originality/value

An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyse convective energy transport and entropy generation in a chamber with internal block, which is capable of maintaining heat and producing heat. Effects of irreversibility ratio are scrutinized for the first time. Analysis of convective heat transfer and entropy production in an enclosure with internal isothermal/heat generating blocks gives the way to predict enhanced heat transfer rate and avoid the failure of advanced technical systems in industrial sectors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 February 2018

W. Stanly and R. Vasanthakumari

The purpose of this paper is used to study the combined effect of solute gradient and magnetic field on dusty couple-stress fluid in the presence of rotation through a porous…

Abstract

Purpose

The purpose of this paper is used to study the combined effect of solute gradient and magnetic field on dusty couple-stress fluid in the presence of rotation through a porous medium.

Design/methodology/approach

The perturbation technique (experimental method) is applied in this study.

Findings

For the case of stationary convection, solute gradient and rotation have stabilizing effect, whereas destabilizing effect is found in dust particles in the system. Couple stress and medium permeability both have dual character to its stabilizing effect in the absence of magnetic field and rotation. Magnetic field succeeded in establishing a stabilizing effect in the absence of rotation.

Originality/value

The results are discussed by allowing one variable to vary and keeping other variables constant, as well as by drawing graphs.

Details

World Journal of Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 July 2021

Nirmalendu Biswas, Nirmal Kumar Manna, Dipak Kumar Mandal and Rama Subba Reddy Gorla

This study aims to investigate thermo-bioconvection of oxytactic microorganisms occurring in a nanofluid-saturated porous lid-driven cavity in the presence of the magnetic field

Abstract

Purpose

This study aims to investigate thermo-bioconvection of oxytactic microorganisms occurring in a nanofluid-saturated porous lid-driven cavity in the presence of the magnetic field. The heating is provided through a bell-shaped curved bottom wall heated isothermally. The effects of the peak height of the curved bottom wall, bioconvection Rayleigh number (Rb), Darcy number (Da), Hartmann number (Ha), Peclet number (Pe), Lewis number (Le) and Grashof number (Gr) on the flow structure, temperature and the iso-concentrations of oxygen and microorganisms are examined and explained systematically. The local and global, characteristics of heat transfer and oxygen concentration, are estimated through the Nusselt number (Nu) and Sherwood number (Sh), respectively.

Design/methodology/approach

The governing equations of continuity, momentum, energy and additionally consisting of species transport equations for oxygen concentration and population density of microorganisms, are discretized by the finite volume method. The evolved linearized algebraic equations are solved iteratively through the alternate direction implicit scheme and the tri-diagonal matrix algorithm. The computation domain has meshed in non-uniform staggered grids. The entire computations are carried out through an in-house developed code written in FORTRAN following the SIMPLE algorithm. The third-order upwind and second-order central difference schemes are used for handling the advection and diffusion terms, respectively. The convergence criterion for the iterative process of achieving the final solution is set as 10–8 and 10–10, respectively, for the maximum residuals and the mass defect.

Findings

The results show that the flow and temperature distribution along with the iso-concentrations of oxygen and microorganisms are markedly affected by the curvature of the bottom wall. A secondary circulation is developed in the cavity that changes the flow physics significantly. The Nu increases with the peak height of the curved bottom wall and Da; however, it decreases with Ha and Rb. The Sh increases with Da but decreases with Ha and the peak height of the curved wall.

Research limitations/implications

A similar study of bioconvection could be extended further considering thermal radiation, chemical attraction, gravity, light, etc.

Practical implications

The outcomes of this investigation could be used in diverse fields of multi-physical applications such as in food industries, chemical processing equipment, fuel cell technology and enhanced oil recovery.

Originality/value

The insights of bioconvection of oxytactic microorganisms using a curved bottom surface along with other physical issues such as nanofluid, porous substance and magnetic field are addressed systematically and thoroughly.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 September 2014

Masoud Kharati Koopaee and Iman Jelodari

The objective of present research is to characterize the unsteady thermal behavior of a square enclosure filled with water-Al2O3 nanofluids in the presence of oriented magnetic

Abstract

Purpose

The objective of present research is to characterize the unsteady thermal behavior of a square enclosure filled with water-Al2O3 nanofluids in the presence of oriented magnetic fields. The purpose this paper is to study the effect of pertinent parameters on the transient natural convection in the enclosure.

Design/methodology/approach

In this research, an in-house implicit finite volume code based on the SIMPLE algorithm is utilized for numerical calculations. To ensure the accuracy of results, comparisons are also made with previous works in literature. In this study, a constant strength magnetic field is concerned and for Rayleigh numbers of Ra=103, 104 and 105 the effect of magnetic field orientation with respect to the case of zero inclination on the thermal performance of cavity is investigated at Hartmann number range of Ha=15-90. In the present work, the nano-particle volume fractions range from φ=0-0.06.

Findings

Results show that when Rayleigh number is Ra=103, the inclination angle, solid particles and Hartmann number has no effect on the transient behavior. It is shown that during the time advancement to steady condition, the heat transfer rate relative to zero inclination angle, may reach to a maximum value. This relative maximum heat transfer increases as the inclination angle increases and decreases as the solid volume fraction increases. The effect of increase in Hartmann number is to decrease this maximum value at Rayleigh number of Ra=104 and at Rayleigh number of Ra=105, depending on the Hartmann number, this value may increase or decrease. It is also found that an increase in Hartmann number leads to delay the appearance of the relative maximum value of heat transfer. Results show that this maximum value is of more significance at zero solid volume fraction when inclination angle is 90 degrees and Hartmann number is Ha=60.

Originality/value

Limited works could be found in the literature regarding the idea of using nanofluids as the working fluid in an enclosure in the presence of magnetic field. In these works, the steady state thermal behavior of enclosures subjected to fixed magnetic fields is concerned. In the present work, the unsteady thermal behavior is concerned and the effect of magnetic field orientation angles on transient heat transfer performance of the enclosure at different Rayleigh and Hartmann numbers and solid volume fractions is explored.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 November 2020

Abdelraheem M. Aly, Sameh Elsayed Ahmed and Zehba Raizah

The purpose of this paper is to study the unsteady ferrofluid flow with a hot source helix inside a cavity under the impacts of a variable magnetic field by using the…

Abstract

Purpose

The purpose of this paper is to study the unsteady ferrofluid flow with a hot source helix inside a cavity under the impacts of a variable magnetic field by using the incompressible smoothed particle hydrodynamics method.

Design/methodology/approach

The governing equations are formulated by considering the basics of the magnetohydrodynamic and ferrohydrodynamics. Different locations of a variable magnetic source outside the geometry are investigated. The helical coils are extensively applied in the cooling and heating of air conditioners and heat pumps. Computations were carried out for different lengths of the heated helix (0.2 ≤ Lh ≤ 0.8), different locations of the magnetic source, (a = 0.5, b = −0.01), (a = 0.5, b = 1.01), (a = 1.01, b = 0.5), (a = −0.01, b = 0.5), different numbers of the inner helix (one helix, two helixes and three helixes) and different values of the nanoparticles volume fraction (0% ≤ ϕ ≤ 10%).

Findings

The outcomes of the investigations revealed that an increase in the lengths of a helix by 0.4 results in a reduction of the stream function by 25.60%. In addition, when the magnetic wire is located near the center of the right wall, the maximum values of the average Nusselt number are obtained while the smallest values of the average Nusselt number are given when the magnetic source is located near center of the top wall.

Originality/value

The novelty of this paper is investigating the natural convection flow from two different models of an inner hot helix inside a cavity with considering different locations of variable magnetic sources.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 July 2010

J.L.G. Janssen, J.J.H. Paulides and E.A. Lomonova

The purpose of this paper is to present novel analytical expressions which describe the 3D magnetic field of arbitrarily magnetized triangular‐shaped charged surfaces. These…

Abstract

Purpose

The purpose of this paper is to present novel analytical expressions which describe the 3D magnetic field of arbitrarily magnetized triangular‐shaped charged surfaces. These versatile expressions model that the field of triangular‐shaped permanent magnets (PMs) are very suitable to model skewed slotless machines.

Design/methodology/approach

The analytical 3D surface charge method is normally used to provide field expressions for PMs in free space. In this paper, the analytical surface charge integrals are analytically solved for charged right‐triangular surfaces. The resulting field is compared with that obtained by finite element modeling (FEM) and subsequently applied in two examples.

Findings

The comparison with FEM shows that the 3D analytical expressions are very accurate and exhibit very low‐numerical noise. These fast‐solving versatile expressions are therefore considered suitable to model triangular‐shaped or polyhedral‐shaped PMs.

Research limitations/implications

The surface charge method assumes that the relative permeability is equal to 1 and therefore soft‐magnetic materials need to be modeled using the method of images. The PMs are assumed to be ideal in terms of homogeneity, magnetization vector, permeability, demagnetization, and geometrical tolerances.

Practical implications

Many applications, such as the subclass of slotless synchronous linear actuators with a skewed PM structure and planar magnetic bearings, are very suitable to incorporate this modeling technique, since it enables the analysis of a variety of performance data.

Originality/value

As an addition to the common 3D analytical field expressions for cuboidal or cylindrical PMs, this paper presents novel expressions for magnets having triangular surfaces.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 March 2011

Michael Ertl and Manfred Kaltenbacher

The fast and flexible development of fast switching electromagnetic valves as used in modern gasoline engine demands the availability of efficient and accurate simulation tools…

Abstract

Purpose

The fast and flexible development of fast switching electromagnetic valves as used in modern gasoline engine demands the availability of efficient and accurate simulation tools. The purpose of this paper is to provide an enhanced computational scheme of these actuators including all relevant physical effects of magneto‐mechanical systems and including contact mechanics.

Design/methodology/approach

The finite element (FE) method is applied to efficiently solve the arising coupled system of partial differential equations describing magneto‐mechanical systems. The algorithm for contact mechanics is based on the cross‐constraint method using an energy‐ and momentum‐conserving time‐discretisation scheme. Although solving separately for the electromagnetic and mechanical system, a strong coupling is ensured within each time step by an iterative process with stopping criterion.

Findings

The numerical simulations of the full switching cycle of an electromagnetic direct injection valve, including the bouncing during the closing state, are just feasible with an enhanced and robust mechanical contact algorithm. Furthermore, the solution of the nonlinear electromagnetic and mechanical equations needs a Newton scheme with a line search scheme for the relaxation of the step size.

Originality/value

The paper provides a numerical simulation scheme based on the FE method, which includes all relevant physical effects in magneto‐mechanical systems, and which is robust even for long‐term contact periods with multitude re‐opening phases.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 December 2022

M.M. Bhatti, Sadiq M. Sait, R. Ellahi, Mikhail A. Sheremet and Hakan Oztop

This study aims to deal with entropy generation and thermal analysis of magnetic hybrid nanofluid containing silver and gold as nanoparticles (Au-Ag/NPs) in the Eyring–Powell…

Abstract

Purpose

This study aims to deal with entropy generation and thermal analysis of magnetic hybrid nanofluid containing silver and gold as nanoparticles (Au-Ag/NPs) in the Eyring–Powell fluid.

Design/methodology/approach

The blood is used as a base fluid to study the rheological effects in a wavy asymmetric channel. The effect of viscous dissipation is also taken into account. The mathematical model is developed using the lubrication technique. The perturbation method is used to solve the nondimensional nonlinear differential equations, whereas the pumping properties have been analyzed using numerical integration.

Findings

The impact of entropy generation, Brinkman number, Hartmann number, nanoparticles volume fraction, thermal Grashof number, Brinkman number and Eyring–Powell fluid parameter is examined on the velocity profile, temperature profile and pumping characteristics. It is observed that the introduction of gold and silver nanoparticles boosts the velocity field in a smaller segment of the channel. The temperature profile rises for the increasing values of Hartmann number, Brinkman number and nanoparticle volume fractions while the temperature profile is restrained by the Eyring–Powell fluid parameter. The pumping rate rises in all sections as the thermal Grashof number and Hartmann number increase; however, the Eyring–Powell fluid parameter has the reverse effect. The volume of the trapping boluses is significantly affected by the Eyring–Powell fluid parameter, thermal Grashof number and fluid parameter.

Originality/value

The results are original and contribute to discover the role of hybrid nanoparticles under the influence of entropy generation viscous dissipation and magnetic fields. Pharmaceutical technology may use this research for things like better mucoadhesive drug delivery systems and more productive peristaltic micropumps.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 January 2012

R. Ellahi and M. Hameed

The purpose of this paper is to study the effects of nonlinear partial slip on the walls for steady flow and heat transfer of an incompressible, thermodynamically compatible third…

Abstract

Purpose

The purpose of this paper is to study the effects of nonlinear partial slip on the walls for steady flow and heat transfer of an incompressible, thermodynamically compatible third grade fluid in a channel. The principal question the authors address in this paper is in regard to the applicability of the no‐slip condition at a solid‐liquid boundary. The authors present the effects of slip, magnetohydrodynamics (MHD) and heat transfer for the plane Couette, plane Poiseuille and plane Couette‐Poiseuille flows in a homogeneous and thermodynamically compatible third grade fluid. The problem of a non‐Newtonian plane Couette flow, fully developed plane Poiseuille flow and Couette‐Poiseuille flow are investigated.

Design/methodology/approach

The present investigation is an attempt to study the effects of nonlinear partial slip on the walls for steady flow and heat transfer of an incompressible, thermodynamically compatible third grade fluid in a channel. A very effective and higher order numerical scheme is used to solve the resulting system of nonlinear differential equations with nonlinear boundary conditions. Numerical solutions are obtained by solving nonlinear ordinary differential equations using Chebyshev spectral method.

Findings

Due to the nonlinear and highly complicated nature of the governing equations and boundary conditions, finding an analytical or numerical solution is not easy. The authors obtained numerical solutions of the coupled nonlinear ordinary differential equations with nonlinear boundary conditions using higher order Chebyshev spectral collocation method. Spectral methods are proven to offer a superior intrinsic accuracy for derivative calculations.

Originality/value

To the best of the authors' knowledge, no such analysis is available in the literature which can describe the heat transfer, MHD and slip effects simultaneously on the flows of the non‐Newtonian fluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000