Search results

1 – 10 of over 2000
Article
Publication date: 1 May 1995

M.A.I. El‐Shaarawi, M.A. Al‐Nimr and M.A. Hader

The paper presents a finite‐difference scheme to solve thetransient conjugated heat transfer problem in a concentricannulus with simultaneously developing hydrodynamic and…

Abstract

The paper presents a finite‐difference scheme to solve the transient conjugated heat transfer problem in a concentric annulus with simultaneously developing hydrodynamic and thermal boundary layers. The annular forced flow is laminar with constant physical properties. Thermal transient is initiated by a step change in the prescribed isothermal temperature of the inner surface of the inside tube wall while the outer surface of the external tube is kept adiabatic. The effects of solid‐fluid conductivity ratio and diffusivity ratio on the thermal behaviour of the flow have been investigated. Numerical results are presented for a fluid of Pr = 0.7 flowing in an annulus of radius ratio 0.5 with various values of inner and outer solid wall thicknesses.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 January 2021

Subhashini Selvaraj and Thirumaran Kesavaperumal

Heat gain in buildings occurs due to heat transfer through the building fabric or envelope, especially the walls and roof. The purpose of this paper is to identify and recommend…

Abstract

Purpose

Heat gain in buildings occurs due to heat transfer through the building fabric or envelope, especially the walls and roof. The purpose of this paper is to identify and recommend the suitable wall materials for better thermal performance in buildings in warm and hot climatic zones of India. As India lies between the tropic of cancer and the equator, the solar radiation from the sun falls more on the walls than the roofs of the buildings. Thus, it is imperative to protect the walls from heat gain to promote thermal comfort in naturally ventilated buildings and reduce the energy loads due to artificial cooling systems in air-conditioned buildings.

Design/methodology/approach

In this paper, an investigation of heat flow characteristics in steady-state and the transient state for five different uninsulated wall structures using computational fluid dynamics (CFD) software has been carried out. The climate conditions at Madurai, India have been considered for this study.

Findings

The findings of the study revealed that aerated autoclaved concrete (AAC) and hollow clay blocks (HCB) for external walls in naturally ventilated buildings in warm climatic regions could improve the building’s thermal performance index and reduce peak indoor operative temperature by about 6°C–7°C. The results of steady-state and transient state analysis were found to be in good agreement with the results of the reviewed literature.

Research limitations/implications

Over the past few decades, only very few architects and builders have been successful in influencing their clients to accept alternate materials such as AAC blocks, HCB, stabilized earth blocks, adobe blocks, fly-ash bricks as an alternate to conventional bricks in an attempt of highlighting their benefits, such as; materials that are easily available, more energy-efficient, can withstand the extreme weather conditions, promote thermal comfort and cost-effective. This paper provides strong evidence that AAC and HCB blocks are the most appropriate materials for improving the thermal performance of envelope walls in regions where the outdoor temperatures are above 40°C.

Originality/value

This paper has made an attempt to identify the appropriate wall materials for effective thermal performance in warm and hot climates. A comparative analysis between five different wall types under the existing solar conditions has been analyzed using CFD simulation study in steady-state and transient conditions under summer conditions and the appropriate wall materials have been suggested. There has been no attempt carried out so far to analyze the thermal performance of different walls using 24 h transient approach in CFD.

Details

Open House International, vol. 46 no. 2
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 30 September 2014

Masoud Kharati Koopaee and Iman Jelodari

The objective of present research is to characterize the unsteady thermal behavior of a square enclosure filled with water-Al2O3 nanofluids in the presence of oriented magnetic…

Abstract

Purpose

The objective of present research is to characterize the unsteady thermal behavior of a square enclosure filled with water-Al2O3 nanofluids in the presence of oriented magnetic fields. The purpose this paper is to study the effect of pertinent parameters on the transient natural convection in the enclosure.

Design/methodology/approach

In this research, an in-house implicit finite volume code based on the SIMPLE algorithm is utilized for numerical calculations. To ensure the accuracy of results, comparisons are also made with previous works in literature. In this study, a constant strength magnetic field is concerned and for Rayleigh numbers of Ra=103, 104 and 105 the effect of magnetic field orientation with respect to the case of zero inclination on the thermal performance of cavity is investigated at Hartmann number range of Ha=15-90. In the present work, the nano-particle volume fractions range from φ=0-0.06.

Findings

Results show that when Rayleigh number is Ra=103, the inclination angle, solid particles and Hartmann number has no effect on the transient behavior. It is shown that during the time advancement to steady condition, the heat transfer rate relative to zero inclination angle, may reach to a maximum value. This relative maximum heat transfer increases as the inclination angle increases and decreases as the solid volume fraction increases. The effect of increase in Hartmann number is to decrease this maximum value at Rayleigh number of Ra=104 and at Rayleigh number of Ra=105, depending on the Hartmann number, this value may increase or decrease. It is also found that an increase in Hartmann number leads to delay the appearance of the relative maximum value of heat transfer. Results show that this maximum value is of more significance at zero solid volume fraction when inclination angle is 90 degrees and Hartmann number is Ha=60.

Originality/value

Limited works could be found in the literature regarding the idea of using nanofluids as the working fluid in an enclosure in the presence of magnetic field. In these works, the steady state thermal behavior of enclosures subjected to fixed magnetic fields is concerned. In the present work, the unsteady thermal behavior is concerned and the effect of magnetic field orientation angles on transient heat transfer performance of the enclosure at different Rayleigh and Hartmann numbers and solid volume fractions is explored.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2005

Marcin Kaminski and Marcin Pawlik

Effectiveness of the homogenization method for various heat transfer problems of engineering composites is the main aim of the paper. This comparative study is done for layered…

Abstract

Effectiveness of the homogenization method for various heat transfer problems of engineering composites is the main aim of the paper. This comparative study is done for layered, fiber and particle reinforced Representative Volume Elements (RVE) for composites made of widely used components. Mathematical model is based on the effective modules method introduced for periodic composites ‐ effective heat conductivity is calculated in the closed form for specific spatial distribution of the components, while effective volumetric heat capacity is obtained from a simple spatial averaging. Such a homogenization scheme makes possible to significantly simplify the numerical analysis of transient heat transfer phenomena in various types of composites. The comparison of temperature histories obtained for the real and homogenized composite models is carried out using the Finite Element Method system ANSYS. As is demonstrated for various boundary problems, a homogenization technique in terms of composites types collected in the paper give satisfactory agreement with the real structure modeling; further numerical studies on composite cells discretization should increase modeling efficiency and diminish the numerical errors.

Details

Multidiscipline Modeling in Materials and Structures, vol. 1 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 August 2019

Chaobin Hu and Xiaobing Zhang

This paper aims to improve the reliability of numerical methods for predicting the transient heat transfers in combustion chambers heated internally by moving heat sources.

Abstract

Purpose

This paper aims to improve the reliability of numerical methods for predicting the transient heat transfers in combustion chambers heated internally by moving heat sources.

Design/methodology/approach

A two-phase fluid dynamic model was used to govern the non-uniformly distributed moving heat sources. A Riemann-problem-based numerical scheme was provided to update the fluid field and provide convective boundary conditions for the heat transfer. The heat conduction in the solids was investigated by using a thermo-mechanical coupled model to obtain a reliable expanding velocity of the heat sources. The coupling between the combustion and the heat transfer is realized based on user subroutines VDFLUX and VUAMP in the commercial software ABAQUS.

Findings

The capability of the numerical scheme in capturing discontinuities in initial conditions and source terms was validated by comparing the predicted results of commonly used verification cases with the corresponding analytical solutions. The coupled model and the numerical methods are capable of investigating heat transfer problems accompanied by extreme conditions such as transient effects, high-temperature and high-pressure working conditions.

Originality/value

The work provides a reliable numerical method to obtain boundary conditions for predicting the heat transfers in solids heated by expanding multiphase reactive flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 2000

Joo‐Sik Yoo

The problem of transient heat transfer and growth of solid in the inviscid stagnation flow when phase change from liquid to solid occurs is considered. A fast and accurate…

Abstract

The problem of transient heat transfer and growth of solid in the inviscid stagnation flow when phase change from liquid to solid occurs is considered. A fast and accurate numerical scheme is developed to determine the instantaneous temperature distribution in both solid and liquid phases and the growth rate of solid directly, without iterative calculation. The solution of the dimensionless governing equations is dependent on the three dimensionless parameters. The characteristics of the transient heat transfer and solidification process for all the parameters are elucidated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2013

Hong Wang, Georgi Djambazov and Koulis Pericleous

The purpose of this paper is to describe how a 3D/1D transient heat transfer model has been developed for getting accurate thermal boundary conditions when investigating the heat

Abstract

Purpose

The purpose of this paper is to describe how a 3D/1D transient heat transfer model has been developed for getting accurate thermal boundary conditions when investigating the heat transfer in the TiAl castings and also for reducing the computational cost and simplifying the mesh generation.

Design/methodology/approach

Heat transfer in the mould is assumed to take place only in a direction perpendicular to the mould wall, called 1D heat transfer. The coordinates of cell centre and the temperature in the mould wall can be calculated by the model instead of meshing mould. Heat transfer in the mould is computed via the FD solution of a 1D heat transfer equation.

Findings

For some types of geometry, the model works very well. However, for some, which contain the geometric feature called “dead corner”, the model can't cover. There is some impact on the accuracy of the model.

Practical implications

In the casting industry, the geometry of the casting is usually very complex and contains different features. This leads to difficult meshing when using numerical model to predict the casting process. Furthermore, an accurate calculation is very important on the thermal boundary during filling and solidification, to support practice, to improve the process and minimise the casting defects.

Originality/value

In this paper, a novel method is developed to calculate the heat transfer through the casting‐mould interface to the mould wall in a casting.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 30 April 2024

Armando Di Meglio, Nicola Massarotti and Perumal Nithiarasu

In this study, the authors propose a novel digital twinning approach specifically designed for controlling transient thermal systems. The purpose of this study is to harness the…

Abstract

Purpose

In this study, the authors propose a novel digital twinning approach specifically designed for controlling transient thermal systems. The purpose of this study is to harness the combined power of deep learning (DL) and physics-based methods (PBM) to create an active virtual replica of the physical system.

Design/methodology/approach

To achieve this goal, we introduce a deep neural network (DNN) as the digital twin and a Finite Element (FE) model as the physical system. This integrated approach is used to address the challenges of controlling an unsteady heat transfer problem with an integrated feedback loop.

Findings

The results of our study demonstrate the effectiveness of the proposed digital twinning approach in regulating the maximum temperature within the system under varying and unsteady heat flux conditions. The DNN, trained on stationary data, plays a crucial role in determining the heat transfer coefficients necessary to maintain temperatures below a defined threshold value, such as the material’s melting point. The system is successfully controlled in 1D, 2D and 3D case studies. However, careful evaluations should be conducted if such a training approach, based on steady-state data, is applied to completely different transient heat transfer problems.

Originality/value

The present work represents one of the first examples of a comprehensive digital twinning approach to transient thermal systems, driven by data. One of the noteworthy features of this approach is its robustness. Adopting a training based on dimensionless data, the approach can seamlessly accommodate changes in thermal capacity and thermal conductivity without the need for retraining.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 October 2017

Sujun Dong, Fanchao Meng, Dechun Guo and Hongling Kang

The time of tightly coupled transient calculation and the accuracy of conventional loosely coupled algorithm make it difficult to meet the engineering design requirements for…

Abstract

Purpose

The time of tightly coupled transient calculation and the accuracy of conventional loosely coupled algorithm make it difficult to meet the engineering design requirements for long-term conjugate heat transfer (CHT) problems. The purpose of this paper is to propose a new loosely coupled algorithm with sufficient accuracy and less calculation time on the basis of the quasi-steady flow field. Through this algorithm, it will be possible to reduce the update frequency of the flow field and devise a strategy by which to reasonably determine the update steps.

Design/methodology/approach

In this paper, the new algorithm updates the flow field by solving the steady governing equations in the fluid region and by calculating the transient temperature distribution until the next update of the fluid flow, by means of solving the transient energy equations in the entire computational domain. The authors propose a strategy by which to determine the update step, by using the engineering empirical formula of the Nusselt number, on the basis of the changes of the inlet and outlet boundary conditions.

Findings

Taking a duct heated by an inner forced air flow heating process as an example, the comparison results for the tightly coupled transient calculation by Fluent software shows that the new algorithm is able to significantly reduce the calculation time of the transient temperature distribution with reasonable accuracy. For example, the respective computing times are reduced to 22.8 and 40 per cent, while the duct wall temperature deviations are 7 and 5 per cent, using the two flow update time steps of 100 and 50 s on the variable inlet-flow rate conditions.

Originality/value

The new algorithm outlined in this paper further improves the calculated performance and meets the engineering design requirements for long-term CHT problems.

Details

Engineering Computations, vol. 34 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 May 2016

Nicola Massarotti, Michela Ciccolella, Gino Cortellessa and Alessandro Mauro

The purpose of this paper is to focus on the numerical analysis of transient free convection heat transfer in partially porous cylindrical domains. The authors analyze the…

Abstract

Purpose

The purpose of this paper is to focus on the numerical analysis of transient free convection heat transfer in partially porous cylindrical domains. The authors analyze the dependence of velocity and temperature fields on the geometry, by analyzing transient flow behavior for different values of cavity aspect ratio and radii ratio; both inner and outer radius are assumed variable in order to not change the difference ro-ri. Moreover, several Darcy numbers have been considered.

Design/methodology/approach

A dual time-stepping procedure based on the transient artificial compressibility version of the characteristic-based split algorithm has been adopted in order to solve the transient equations of the generalized model for heat and fluid flow through porous media. The present model has been validated against experimental data available in the scientific literature for two different problems, steady-state free convection in a porous annulus and transient natural convection in a porous cylinder, showing an excellent agreement.

Findings

For vertically divided half porous cavities, with Rayleigh numbers equal to 3.4×106 for the 4:1 cavity and 3.4×105 for the 8:1 cavity, the numerical results show that transient oscillations tend to disappear in presence of cylindrical geometry, differently from what happens for rectangular one. The magnitude of this phenomenon increases with radii ratio; the porous layer also affects the stability of velocity and temperature fields, as oscillations tend to decrease in presence of a porous matrix with lower value of the Darcy number.

Research limitations/implications

A proper analysis of partially porous annular cavities is fundamental for the correct estimation of Nusselt numbers, as the formulas provided for rectangular domains are not able to describe these problems.

Practical implications

The proposed model represents a useful tool for the study of transient natural convection problems in porous and partially porous cylindrical and annular cavities, typical of many engineering applications. Moreover, a fully explicit scheme reduces the computational costs and ensures flexibility.

Originality/value

This is the first time that a fully explicit finite element scheme is employed for the solution of transient natural convection in partially porous tall annular cavities.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 2000