Search results

1 – 10 of 287
Article
Publication date: 6 December 2022

M.M. Bhatti, Sadiq M. Sait, R. Ellahi, Mikhail A. Sheremet and Hakan Oztop

This study aims to deal with entropy generation and thermal analysis of magnetic hybrid nanofluid containing silver and gold as nanoparticles (Au-Ag/NPs) in the Eyring–Powell…

Abstract

Purpose

This study aims to deal with entropy generation and thermal analysis of magnetic hybrid nanofluid containing silver and gold as nanoparticles (Au-Ag/NPs) in the Eyring–Powell fluid.

Design/methodology/approach

The blood is used as a base fluid to study the rheological effects in a wavy asymmetric channel. The effect of viscous dissipation is also taken into account. The mathematical model is developed using the lubrication technique. The perturbation method is used to solve the nondimensional nonlinear differential equations, whereas the pumping properties have been analyzed using numerical integration.

Findings

The impact of entropy generation, Brinkman number, Hartmann number, nanoparticles volume fraction, thermal Grashof number, Brinkman number and Eyring–Powell fluid parameter is examined on the velocity profile, temperature profile and pumping characteristics. It is observed that the introduction of gold and silver nanoparticles boosts the velocity field in a smaller segment of the channel. The temperature profile rises for the increasing values of Hartmann number, Brinkman number and nanoparticle volume fractions while the temperature profile is restrained by the Eyring–Powell fluid parameter. The pumping rate rises in all sections as the thermal Grashof number and Hartmann number increase; however, the Eyring–Powell fluid parameter has the reverse effect. The volume of the trapping boluses is significantly affected by the Eyring–Powell fluid parameter, thermal Grashof number and fluid parameter.

Originality/value

The results are original and contribute to discover the role of hybrid nanoparticles under the influence of entropy generation viscous dissipation and magnetic fields. Pharmaceutical technology may use this research for things like better mucoadhesive drug delivery systems and more productive peristaltic micropumps.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 November 2012

Gerard Cummins and Marc P.Y. Desmulliez

The purpose of this paper is to present an exhaustive review of research studies and activities in the inkjet printing of conductive materials.

8924

Abstract

Purpose

The purpose of this paper is to present an exhaustive review of research studies and activities in the inkjet printing of conductive materials.

Design/methodology/approach

This paper gives a detailed literature survey of research carried out in inkjet printing of conductive materials.

Findings

This article explains the inkjet printing process and the various types of conductive inks. It then examines the various factors that affect the quality of inkjet printed interconnects such as printing parameters, materials and substrate treatments. Methods of characterising both the inkjet printing process and the electrical properties of printed conductive materials are also presented. Finally relevant applications of this technology are described.

Originality/value

Inkjet printing is currently one of the cheapest direct write techniques for manufacturing. The use of this technique in electronic manufacturing, where interconnects and other conductive features are required is an area of increasing relevance to the fields of electronics manufacturing, packaging and assembly. This review paper would therefore be of great value and interest to this community.

Article
Publication date: 12 August 2022

Jayaraman Kathirvelan

The purpose of this paper is to deal with an identification of a novel ink-jet printing sensor fabrication technology for fabricating flexible carbon heaters of macro and micro…

Abstract

Purpose

The purpose of this paper is to deal with an identification of a novel ink-jet printing sensor fabrication technology for fabricating flexible carbon heaters of macro and micro sizes, carbon interdigitated (IDT) electrodes and silver IDT electrodes. The technology involved in the proposed ink-jet printing method and materials used for the formulation of homemade nano-conductive inks (digital inks) are discussed in detail. The ink-jet printed flexible carbon heaters of different sizes (macro and micro) and carbon IDT electrodes and flexible silver IDT electrodes can be used as the flexible sensing layers in electrochemical gas sensors for sensitive and selective gas sensing applications. The characterization of ink-jet printed carbon heaters on Kapton substrate and its results are discussed. Similarly, the results of formulation of silver nano-conductive ink and printing of silver IDT electrodes on Kapton and its characterization are reported here for the first time.

Design/methodology/approach

Flexible carbon heaters of different sizes (macro and micro), carbon micro-IDT electrodes and silver IDT electrodes patterns were developed using AutoCAD 2D and printed on the Kapton (polyimide sheet) flexible substrate using the home-made nano-conductive inks with the help of EpsonT60 commercial piezo-head-based drop-on demand technology printer with standard printing options.

Findings

The proposed novel method is able to print heater patterns and IDT electrode patterns of approximately 12 µm and approximately 1 µm thickness, respectively, on flexible substrate using the home-made nano-conductive inks of carbon and silver by using a commercial low-cost printer. The home-made nano-conductive inks can be re-used for multiple prints up to six months shelf life. The resistance of the carbon heater was measured as 88 O under normal atmospheric condition. The novel flexible carbon heater was tested for its functionality and found to be satisfactory. The resistance of the silver IDT flexible electrodes was measured as 9.5 O which is better than the earlier works carried out in this paper.

Research limitations/implications

The main challenge is associated with cleaning of printing ink ejection system in the existing commercial printers. The customization of the existing printer in the near future can minimize the printing challenges.

Practical implications

The novel ink-jet printing technology proposed in this work is cost-effective, capable of achieving bulk production of flexible sensor elements, and consumes the least device fabrication time and high material yielding. The printing can be done with commercial piezo-head-based ink-jet printers with custom-prepared nano-conductive inks. There is a huge market potential for this paper.

Originality/value

Both the carbon heaters and silver IDT electrodes were printed on Kapton flexible substrate by using the commercial printer for the first time. The paper is promising the revolution in flexible low-cost sensor fabrication for mass production, and it is an alternate for thin film and thick sensor fabrication methods. The future of sensor fabrication technology will be the ink-jet printing method. In this paper, the research developments of flexible carbon heaters and flexible silver IDT electrodes for the time are reported. The characterization of carbon heaters and silver IDT electrodes were carried out and confirmed that the results are favourable for gas sensor applications.

Article
Publication date: 6 December 2020

Jayaraman Kathirvelan

This paper aims to encompass the technological advancements in the area of flexible sensing electronics fabrication particularly for wearable device development applications. In…

Abstract

Purpose

This paper aims to encompass the technological advancements in the area of flexible sensing electronics fabrication particularly for wearable device development applications. In the recent past, it is evident that there is a tremendous growth in the field of flexible electronics and sensors fabrication technologies all around the world. Even though, there is a significant amount of research has been carried in the past decade, but still there is a huge need for exploring novel materials for low temperature processing, optimized printing methods and customized printing devices with accurate feature control.

Design/methodology/approach

The author has done an extensive literature survey in the proposed area and found that the researchers are showing significant interest in exploring novel materials, new conductive ink processing methods suitable for additive manufacturing, and fabrication technologies for developing the plastic substrate-based flexible electronics for the on growing demands of wearable devices in the market.

Findings

The author has consolidated some of the recent advancements in the area of flexible sensing electronics using the inkjet-printing platform carried out by the researchers. The novel customized inkjet-printing technology, materials selections for device development, compatibility of the materials for the inkjet-printing process and the interesting results of the devices fabricated are highlighted in this paper.

Originality/value

The author has reported the novel inkjet-printing platforms explored by researchers in the recent past for various applications which primarily includes gas sensing. The author has consolidated in a crisp manner about the technology, materials compatible for inkjet-printing, and the exciting results of the printed devices. The author has reported the advantages and challenges of the proposed methods by the researchers. This work will bridge the technical gap in the inkjet-printing technology and will be useful for the researchers to take forward the research work on this domain to the next level.

Details

Sensor Review, vol. 41 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 July 2013

Olga Ivanova, Christopher Williams and Thomas Campbell

This paper aims to provide a review of available published literature in which nanostructures are incorporated into AM printing media as an attempt to improve the properties of…

12431

Abstract

Purpose

This paper aims to provide a review of available published literature in which nanostructures are incorporated into AM printing media as an attempt to improve the properties of the final printed part. The purpose of this article is to summarize the research done to date, to highlight successes in the field, and to identify opportunities that the union of AM and nanotechnology could bring to science and technology.

Design/methodology/approach

Research in which metal, ceramic, and carbon nanomaterials have been incorporated into AM technologies such as stereolithography, laser sintering, fused filament fabrication, and three‐dimensional printing is presented. The results of the addition of nanomaterials into these AM processes are reviewed.

Findings

The addition of nanostructured materials into the printing media for additive manufacturing affects significantly the properties of the final parts. Challenges in the application of nanomaterials to additive manufacturing are nevertheless numerous.

Research limitations/implications

Each of the AM methods described in this review has its own inherent limitations when nanoparticles are applied with the respective printing media. Overcoming these design boundaries may require the development of new instrumentation for successful AM with nanomaterials.

Originality/value

This review shows that there are many opportunities in the marriage of AM and nanotechnology. Promising results have been published in the application of nanomaterials and AM, yet significant work remains to fully harness their inherent potential. This paper serves the purpose to researchers to explore new nanomaterials‐based composites for additive manufacturing.

Details

Rapid Prototyping Journal, vol. 19 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 August 2019

Ab Kasaeian, Reza Daneshazarian, Fathollah Pourfayaz, Sahar Babaei, Mojgan Sheikhpour and Shima Nakhjavani

Because of its increased absorptance in fluid and reduced heat loss, direct absorption nanofluid (DANF) is receiving intense interest as an efficient way to harvest solar energy…

Abstract

Purpose

Because of its increased absorptance in fluid and reduced heat loss, direct absorption nanofluid (DANF) is receiving intense interest as an efficient way to harvest solar energy. This work aims to investigate, for the first time, the application of DANF in parabolic trough collectors (PTC), a promising collector for solar thermal systems.

Design/methodology/approach

A representative flow and heat transfer study of different fluids in a straight tube is conducted, and the basic energy equation and radiative transfer equations are numerically solved to obtain the fluid temperature distribution and energy conversion efficiency. Ethylene glycol (EG) and different concentrations of (i.e., 0.1-0.6 per cent) multi-wall carbon nanotubes (MWCNT) in EG are used as sample fluids. Four cases are studied for a traditional PTC (i.e., using metal tube) and a direct absorption PTC (i.e., using transparent tube) including a bare tube, a tube with an air-filled glass envelope and a tube with vacuumed glass envelop. The numerical results are verified by an experimental study using a copper-glass absorber tube, which reveals the good potential of DANFs.

Findings

Compared with a conventional PTC, using DANF shows an increase of 8.6 per cent and 6.5 K, respectively, in thermal efficiency and outlet temperature difference at a volume fraction (0.5 per cent) of nanoparticles. The results also show that the improvement in solar efficiency increases with increasing particle concentrations, and the vacuum insulated case has the highest efficiency.

Originality/value

In all previous studies, an important section was missing as the effect of photons on the direct solar absorption trough collector, which is considered in this study. This paper proposes a new concept of using direct solar absorption nanofluids for concentrated solar collectors and analyzes the performance of both absorptance and transmittance efficiency considerations. To reveal the potential of the new concept, an analytical model based on energy balance is developed, and two case studies are performed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 March 2016

Yoshio Kobayashi, Tetsuya Ayame, Kyosuke Shibuya, Tomohiko Nakagawa, Yohsuke Kubota, Kohsuke Gonda and Noriaki Ohuchi

This paper aims to propose a simple method for stabilizing silica-coated silver iodide (AgI/SiO2) core-shell particles, of which a colloid solution functions as an X-ray contrast…

Abstract

Purpose

This paper aims to propose a simple method for stabilizing silica-coated silver iodide (AgI/SiO2) core-shell particles, of which a colloid solution functions as an X-ray contrast agent.

Design/methodology/approach

A colloid solution of AgI nanoparticles was prepared by mixing silver perchlorate and potassium iodide in water. The AgI/SiO2 nanoparticles were fabricated by a sol-gel method using NaOH, H2O and tetraethylorthosilicate in ethanol in the presence of AgI nanoparticles surface-modified with 3-mercaptopropyltrimethoxysilane.

Findings

The silica shells of AgI/SiO2 particles were dissolved near the AgI nanoparticle surface, when they were washed by a process composed of centrifugation, removal of supernatant with decantation, addition of water as a washing solution and a shake with a vortex mixer. In contrast, the shells were not damaged by using ethanol as the washing solution, i.e. ethanol-washing. An X-ray photoelectron spectroscopy spectrum of the silica was changed after the ethanol-washing, which indicated that the ethanol-washing had an effect on the chemical bonds in silica. The effect also acted on the silica shells of AgI/SiO2 particles, which did not damage the core-shell structure, i.e. controlled the dissolution of shell.

Originality/value

The paper demonstrates that the ethanol-washing is quite useful for stabilizing the core-shell structure composed of the silica shells.

Details

Pigment & Resin Technology, vol. 45 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 May 2020

Margarita Skiba, Viktoria Vorobyova, Alexander Pivovarov and Inna Trus

This paper aims to synthesize silver nanoparticles using atmospheric discharge plasma in contact with liquid at different pressure in reactor and to assess their catalytical…

Abstract

Purpose

This paper aims to synthesize silver nanoparticles using atmospheric discharge plasma in contact with liquid at different pressure in reactor and to assess their catalytical properties for reducing 4-nanoparticles (NP).

Design/methodology/approach

The Ag colloidal NPs was rapidly synthesized as a result of non-equilibrium low-temperature plasma formation between an electrode and the surface of AgNO3 solution for 5 min at different pressure in reactor. Synthesized Ag NPs were characterized with common analytical techniques. Ultraviolet–visible (UV) spectroscopy, dynamic light scattering, scanning microcopy analysis were used to study the formation and characteristics of silver nanoparticles.

Findings

The formation of silver colloidal solutions under plasma discharge at different pressure in reactor is characterized by the presence of surface resonance peak in the spectra. Scanning electron microscope (SEM) images confirmed the formation of spherical particles having a size distribution in the range of 15-26 nm. The AgNPs solution showed excellent rapid catalytic activity for the complete degradation of toxic 4-nitrophenol (4-NPh) into non-toxic 4-aminophenol (4-APh) within 18 min.

Research limitations/implications

Further studies are necessary for confirmation of the practical application, especially of deposition Ag NPs on TiO2.

Practical implications

The method provides a simple and practical solution to improving the synthesis of colloidal solutions of Ag NPs for degradation of organic pollutants (4-NPh) in water and wasters water.

Originality/value

Atmospheric discharge plasma in contact with liquid at different pressure can be used as an effective technique for synthesis of nanomaterials with catalytic properties.

Details

Pigment & Resin Technology, vol. 49 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 January 2023

Liyun Li, Yu Zhang, Shiyu Xia, Zhefei Sun, Junjie Yuan, Dongchuan Su, Hunjun Cao, Xiaoming Chai, Qingtian Wang, Jintang Li and Zhihao Zhang

This study aims to develop a facile ligand-exchange strategy to promote nano-sintering of oleylamine (OAM)-capped silver nanoparticles (AgNPs). By using ligand exchange process…

Abstract

Purpose

This study aims to develop a facile ligand-exchange strategy to promote nano-sintering of oleylamine (OAM)-capped silver nanoparticles (AgNPs). By using ligand exchange process with NH4OH to remove OAM from the surface of AgNP, this study reports effectively reducing the sintering temperature of AgNPs to achieve low-temperature nano-sintering. Compared with untreated AgNPs of OAM-capped, NH4OH-treated AgNPs possess superior sintering performance that could be applied to a fractional generator device as conductor and in favour of the fabrication of flexible circuit modules.

Design/methodology/approach

First, oleylamine is used as reductant to synthesize monodisperse AgNPs by a simple one-step method. Then ligand exchange is used with NH4OH at different treating times to remove OAM, and micro-Fourier transform infrared spectroscopy and contact angle test are applied to clear the mechanism and structure characteristics of these processes. Finally, NH4OH-treated AgNPs sediment sintering is used at different temperatures to test electrical resistivity and use ex situ scanning electron microscopy combined with in situ X-ray diffraction to study changes in microstructure in the whole nano-sintering process.

Findings

The AgNPs are always capped by organic ligands to prevent nanoparticles agglomeration. And oleylamine used as reductant could synthesize desirable size distributions of 8–32 nm with monodisperse globular shapes, but the low-temperature nano-sintering seemed not to be achieved by the oleylamine-capped AgNPs because OAM is an organic with long C-chain. The ligand exchange approach was enabled to replace the original organic ligands capped on AgNPs with organic ligands of low thermal stability which could promote nano-sintering. After ligand exchange treated AgNPs could be sintered on photo paper, polydimethylsiloxane (PDMS) and polyethylene terephthalate flexible substrates at low temperature.

Originality/value

In this research, the method ligand exchange is used to change the ligand of AgNPs. During ligand exchange, NH4OH was used to treat AgNPs. Through the treatment of NH4OH, the change of hydrophilic and hydrophobic properties of AgNPs was successfully realized. The sintering temperature of AgNPs can also be reduced and the properties can be improved. Finally, the applicability of the AgNPs sediment with this nano-sintering process at low temperature for obtaining conductive patterns was evaluated using PDMS as substrates.

Details

Microelectronics International, vol. 40 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 15 March 2022

Mohamed H. Sharaf, Adham M. Nagiub, Salem S. Salem, Mohamed H. Kalaba, Esmail M. El Fakharany and Hamada Abd El-Wahab

This study aims to focus on the preparation and characterization of the silver nanowire (AgNWs), as well as their application as antimicrobial and antivirus activities either with…

Abstract

Purpose

This study aims to focus on the preparation and characterization of the silver nanowire (AgNWs), as well as their application as antimicrobial and antivirus activities either with incorporation on the waterborne coating formulation or on their own.

Design/methodology/approach

Prepared AgNWs are characterized by different analytical instruments, such as ultraviolet-visible spectroscope, scanning electron microscope and X-ray diffraction spectrometer. All the paint formulation's physical and mechanical qualities were tested using American Society for Testing and Materials, a worldwide standard test procedure. The biological activities of the prepared AgNWs and the waterborne coating based on AgNWs were investigated. And, their effects on pathogenic bacteria, antioxidants, antiviral activity and cytotoxicity were also investigated.

Findings

The obtained results of the physical and mechanical characteristics of the paint formulation demonstrated the formulations' greatest performance, as well as giving good scrub resistance and film durability. In the antimicrobial activity, the paint did not have any activity against bacterial pathogen, whereas the AgNWs and AgNWs with paint have similar activity against bacterial pathogen with inhibition zone range from 10 to 14 mm. The development of antioxidant and cytotoxicity activity of the paint incorporated with AgNWs were also observed. The cytopathic effects of herpes simplex virus type 1 (HSV-1) were reduced in all three investigated modes of action when compared to the positive control group (HSV-1-infected cells), suggesting that these compounds have promising antiviral activity against a wide range of viruses, including DNA and RNA viruses.

Originality/value

The new waterborne coating based on nanoparticles has the potential to be promising in the manufacturing and development of paints, allowing them to function to prevent the spread of microbial infection, which is exactly what the world requires at this time.

Details

Pigment & Resin Technology, vol. 52 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 287