Search results

1 – 10 of 18
Article
Publication date: 1 July 2022

Anas Islam, Shashi Prakash Dwivedi, Rajat Yadav and Vijay Kumar Dwivedi

The purpose of this study to find an alternate method to minimize waste i.e., eggshell and rice husk ash. In this paper, eggshell (ES) and rice husk ash (RHA) particles are used…

Abstract

Purpose

The purpose of this study to find an alternate method to minimize waste i.e., eggshell and rice husk ash. In this paper, eggshell (ES) and rice husk ash (RHA) particles are used as reinforcements for examining their effect on the coefficient of thermal expansion (CTE), grain size (GS) and corrosion behavior for developed composite material.

Design/methodology/approach

In this investigation, 5 Wt.% each of ES and RHA reinforcement particles have been introduced. To investigate the microstructures of the developed composite material, scanning electron microscope was used. Physical and mechanical properties of composite material are tensile strength and hardness that have been examined.

Findings

The result of this paper shows that number of grains per square inch for composition Al/5% ES/5% RHA composite was found to be 1,243. Minimum value of the volume CTE was found to be 6.67 × 10–6/°C for Al/5% ES/5% RHA composite. The distribution of hard phases of ES particles in metal matrix is responsible for improvements in tensile strength and hardness. These findings demonstrated that using carbonized ES as reinforcement provides superior mechanical and physical properties than using uncarbonized ES particles.

Originality/value

There are several articles examining the impact of varying Wt.% of carbonized ES and rice husk reinforcement on the microstructures and mechanical characteristics of metal composites. CTE, GS and corrosion behavior are among of the features that are examined in this paper.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 May 2022

Senthil Kumar Selvaraj, Srimathy B., Sakthivel S. and Senthil Kumar B.

In the past decade, the biopolymeric properties of chitosan (CH) have been largely exploited for various applications. This paper aims to study the use of CH in its nanoform, i.e…

Abstract

Purpose

In the past decade, the biopolymeric properties of chitosan (CH) have been largely exploited for various applications. This paper aims to study the use of CH in its nanoform, i.e. as nanofibers blended with polyvinyl alcohol (PVA) for various antimicrobial applications in detail. In particular, their ability toward bacterial growth inhibition, in vitro drug release and their biocompatibility toward tissue growth have been investigated in detail.

Design/methodology/approach

Electrospinning technique was adapted for depositing CH/PVA blended nanofilms on the silver foil under optimized conditions of high voltage. Three different concentrations of blended nanofiber samples were prepared and their antimicrobial properties were studied.

Findings

The bead diameter and average diameter of blended nanofibers increase with CH concentration. Antibacterial activity increases as CH concentration increases. Increased hydrophilicity in CH-enriched samples contributes to a higher drug release profile.

Originality/value

To the best of the authors’ knowledge, chick chorioallantoic membrane assay analysis has been carried out for the first time for CH/PVA films which shows that CH/PVA blends are biocompatible. CH after being converted as nanoparticles exhibits higher drug release rate by in vitro method.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 7 March 2022

Geetha Margret Soundri, Kavitha S. and Senthil Kumar B.

The essential properties of active sports fabrics are moisture management, quick-drying, body heat management and thermal regulations. Fibre type, blending nature, yarn and fabric…

Abstract

Purpose

The essential properties of active sports fabrics are moisture management, quick-drying, body heat management and thermal regulations. Fibre type, blending nature, yarn and fabric structure and the finishing treatment are the key parameters that influenced the performance of the clothing meant for sportswear. This study aims to investigate the effect of fibre blending and structural tightness factors on bi-layer sport fabric's dimensional, moisture management and thermal properties.

Design/methodology/approach

In this study, 12 different bi-layer inter-lock fabrics were produced. Polyester filament (120 Denier) yarn was fed to form the backside of the fabric, and the face side was varied with cotton, modal, wool and soya spun yarns of 30sNe. Three different types of structural tightness factors were considered, such as low, medium and high were taken for sample development. The assessment towards dimensional, moisture management and thermal properties was carried out on all the samples.

Findings

The polyester-modal blend with a high tightness factor has shown maximum overall moisture management capability (OMMC) values of 0.73 and air permeability of 205.3 cm3/cm2/s. The same sample has shown comparatively higher thermal conductivity of 61.72 × 10–3 W m-1 °C-1(Under compression state) and 58.45 × 10–3 W m-1 °C-1 (under recovery state). In the case of surface roughness is concerned, polyester-modal blends have shown the lowest surface roughness, surface roughness amplitude and surface friction co-efficient. Among the selected fibre combinations, the overall comfort level of polyester-modal bi-layer knitted structure with a higher tightness factor is appreciable. Polyester-modal is more suitable for active sportswear among the four fiber blend combinations.

Research limitations/implications

The outcome of this study will help to gain a better understanding of fibre blends, structural tightness factor and other process specifications for the development of bi-layer fabric for active sportswear applications. The dynamic functional testing methods (Moisture management and Thermal properties) were carried out to simulate the actual wearing environment of the sports clothing. This study will create a new scope of research opportunities in the field of bi-layer sports textiles.

Originality/value

This study was conducted to explore the influence of fibre blend and structural tightness factor on the comfort level of sportswear and to find the suitable fibre blend for active sportswear clothing.

Details

Research Journal of Textile and Apparel, vol. 27 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 17 November 2023

Rituraj Raut, Savitri Jadhav and Nathrao B. Jadhav

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different…

Abstract

Purpose

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different materials for different components that too without compromising strength.

Design/methodology/approach

A 3D computer-aided design (CAD) model of a hexacopter with a regular hexagonal frame is presented. Furthermore, a finite element model is developed to perform a structural analysis and determine Von Mises stress and strain values along with deformations of different components of the proposed hexacopter design.

Findings

The results establish that carbon fibre outperforms acrylonitrile butadiene (ABS) with respect to deformations. Within the permissible limits of the stress and strain values, both carbon fiber and ABS are suggested for different components. Thus, a proposed hexacopter offers lighter weight, high strength and low cost.

Originality/value

The use of different materials for different components is suggested by making use of static structural analysis. This encourages new research work and helps in developing new applications of hexacopter, and it has never been reported in literature. The suggested materials for the components of the hexacopter will prove to be suitable considering weight, strength and cost.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 8 September 2021

Senthil Kumar Angappan, Tezera Robe, Sisay Muleta and Bekele Worku M

Cloud computing services gained huge attention in recent years and many organizations started moving their business data traditional server to the cloud storage providers…

Abstract

Purpose

Cloud computing services gained huge attention in recent years and many organizations started moving their business data traditional server to the cloud storage providers. However, increased data storage introduces challenges like inefficient usage of resources in the cloud storage, in order to meet the demands of users and maintain the service level agreement with the clients, the cloud server has to allocate the physical machine to the virtual machines as requested, but the random resource allocations procedures lead to inefficient utilization of resources.

Design/methodology/approach

This thesis focuses on resource allocation for reasonable utilization of resources. The overall framework comprises of cloudlets, broker, cloud information system, virtual machines, virtual machine manager, and data center. Existing first fit and best fit algorithms consider the minimization of the number of bins but do not consider leftover bins.

Findings

The proposed algorithm effectively utilizes the resources compared to first, best and worst fit algorithms. The effect of this utilization efficiency can be seen in metrics where central processing unit (CPU), bandwidth (BW), random access memory (RAM) and power consumption outperformed very well than other algorithms by saving 15 kHz of CPU, 92.6kbps of BW, 6GB of RAM and saved 3kW of power compared to first and best fit algorithms.

Originality/value

The proposed multi-objective bin packing algorithm is better for packing VMs on physical servers in order to better utilize different parameters such as memory availability, CPU speed, power and bandwidth availability in the physical machine.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 3 November 2022

Rajat Yadav, Anas Islam and Vijay Kumar Dwivedi

The purpose of this paper is to study Al-based green composite. To make composite samples of aluminium alloy (AA3105) with different weight percentages of rice husk ash (RHA) and…

64

Abstract

Purpose

The purpose of this paper is to study Al-based green composite. To make composite samples of aluminium alloy (AA3105) with different weight percentages of rice husk ash (RHA) and eggshell (ES) particles as reinforcement, stir casting method was used.

Design/methodology/approach

Several other aspects, including the weight percent of reinforcing agent particles, the applied stress and the sliding speed, were taken into consideration. During the course of the wear test, the sliding distance that was recorded varied from a minimum of 1,000 m all the way up to a maximum of 3,135 m (10, 15, 20, 25 and 30 min). The typical range for normal loads is 8–24 N, and their speed is 1.58 m/s.

Findings

With the AA/ES/RHA composite, the wear rates decreases when the grain size of the reinforcing particles enhanced. Scanning electron microscopy images of worn surfaces show that at low speeds, delaminating and ploughing are the main causes of wear. At high speeds, ploughing is major cause of wear. Composites with better wear-resistant properties can be used in wide range of tribological applications, especially in the automotive industry. It was found that hardness increases at the same time as the weight of the reinforcement increases. Tensile and hardness were maximized at 10% reinforcement mix in Al3105.

Originality/value

In this work, ES and RHA has been used to develop green metal matrix composite to support green revolution as promoted/suggested by United Nations thus reducing the environmental pollution.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 November 2022

Devinder Kumar and Anupama Prashar

This study examines the effect of human and technological resource bundling on the financial and non-financial performance of third-party logistics (3PL) firms in India.

Abstract

Purpose

This study examines the effect of human and technological resource bundling on the financial and non-financial performance of third-party logistics (3PL) firms in India.

Design/methodology/approach

For achieving the research aim, 248 practitioners from India based 3PL firms were surveyed. The relationships between human and technology resources and firm performance were examined using structural equation modelling (SEM).

Findings

The results of empirical tests revealed that human and technological resources significantly enhance the performance of the 3PL firm. However, the firm's logistic capabilities related to track and trace, order management and final assembly do not mediate this relationship.

Originality/value

This study contributes by examining resource bundling in India's 3PL industry using empirical data and providing knowledge of the relationship between resources and business performance. It guides managers to consciously develop resource capabilities that influence firm performance.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 1
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 1 November 2023

Mudit Shukla, Divya Tyagi and Sushanta Kumar Mishra

Based on the conservation of resources theory, this study aims to investigate if the fear of career harm influences employees’ knowledge-hoarding behavior. The study further…

Abstract

Purpose

Based on the conservation of resources theory, this study aims to investigate if the fear of career harm influences employees’ knowledge-hoarding behavior. The study further examines felt violation as the predictor of employees’ fear of career harm. The study also explores leader-member exchange as a boundary factor influencing the effect of felt violation on employees’ fear of career harm.

Design/methodology/approach

The data were collected in three waves from 402 professionals working in the information technology industry in Bengaluru, popularly known as the Silicon Valley of India.

Findings

The findings indicate fear of career harm as a critical predictor of employees’ knowledge-hoarding behavior. Moreover, felt violation indirectly impacts knowledge-hoarding behavior by enhancing employees’ fear of career harm. The adverse effect of felt violation was found to be stronger for employees with poor-quality relationships with their leaders.

Practical implications

The study carries important managerial implications as it uncovers the antecedents of knowledge hoarding. First, the human resource department can devise specific guidelines to ensure that the employees are treated the way they were promised. They can also organize training opportunities and mentoring so that the employees’ performance and growth do not get hampered, even if there is a violation. Moreover, such cases should be addressed in an adequate and expedited manner. More significantly, leaders can compensate for the failure of organizational-level levers by developing quality relationships with their subordinates.

Originality/value

The study advances the existing literature on knowledge hoarding by establishing a novel antecedent. Furthermore, it identifies how the employee-leader relationship’s quality can mitigate the adverse effect of felt violation.

Details

Journal of Knowledge Management, vol. 28 no. 4
Type: Research Article
ISSN: 1367-3270

Keywords

Article
Publication date: 20 June 2023

Azim Mohammad, Abu Hamja and Peter Hasle

Shorter lead time with low price and quality product demand is pivotal in the garment industry. Pressure on production lead time stresses the importance of reducing style…

Abstract

Purpose

Shorter lead time with low price and quality product demand is pivotal in the garment industry. Pressure on production lead time stresses the importance of reducing style changeover time in manufacturing factories, and this paper aims to contribute to solving the challenge by showing how the single minute exchange of die (SMED) methodology in practice can be adapted to garment factories in developing countries.

Design/methodology/approach

The paper investigates three cases of SMED implementation integrated with responsible, accountable, consulted, informed (RACI) matrices in garment factories in an action research approach. Both quantitative and qualitative methods are applied.

Findings

The study shows a reduction of 50% to 64% of changeover time with SMED implementation measured with two key indicators – throughout time and time to reach peak production. Moreover, the implementation depends on the application of the RACI matrix for the distribution of responsibility as well as integration with the basic production flow before and after the application of SMED.

Practical implications

The study can guide better SMED implementation in garment factories with limited investment by stressing the need to adapt to the specifics of the garment industry, secure the division of responsibility and integrate SMED in the production flow before and after the changeover.

Originality/value

Limited research on the application of SMED in the garment industry. This paper contributes to understanding the specific conditions for successful implementation in the garment industry in developing countries and addresses additional activities that help secure a sustainable implementation process.

Details

International Journal of Lean Six Sigma, vol. 15 no. 2
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 12 September 2023

Amrit Raj Paul, Manidipto Mukherjee and Mohit Kumar Sahu

The purpose of this study is to investigate the deposition of SS–Al transitional wall using the wire arc directed energy deposition (WA-DED) process with a Cu interlayer. This…

Abstract

Purpose

The purpose of this study is to investigate the deposition of SS–Al transitional wall using the wire arc directed energy deposition (WA-DED) process with a Cu interlayer. This study also aims to analyse the metallographic properties of the SS–Cu and Al–Cu interfaces and their mechanical properties.

Design/methodology/approach

The study used transitional deposition of SS–Al material over each other by incorporating Cu as interlayer between the two. The scanning electron microscope analysis, energy dispersive X-ray analysis, X-ray diffractometer analysis, tensile testing and micro-hardness measurement were performed to investigate the interface characteristics and mechanical properties of the SS–Al transitional wall.

Findings

The study discovered that the WA-DED process with a Cu interlayer worked well for the deposition of SS–Al transitional walls. The formation of solid solutions of Fe–Cu and Fe–Si was observed at the SS–Cu interface rather than intermetallic compounds (IMCs), according to the metallographic analysis. On the other hand, three different IMCs were formed at the Al–Cu interface, namely, Al–Cu, Al2Cu and Al4Cu9. The study also observed the formation of a lamellar structure of Al and Al2Cu at the hypereutectic phase. The mechanical testing revealed that the Al–Cu interface failed without significant deformation, i.e. < 4.73%, indicating the brittleness of the interface.

Originality/value

The study identified the formation of HCP–Fe at the SS–Cu interface, which has not been previously reported in additive manufacturing literature. Furthermore, the study observed the formation of a lamellar structure of Al and Al2Cu phase at the hypereutectic phase, which has not been previously reported in SS–Al transitional wall deposition.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

Last 6 months (18)

Content type

Article (18)
1 – 10 of 18