Search results

1 – 10 of over 11000
Article
Publication date: 6 June 2023

Yuquan Ni, Peng Guo, Chonggang Ren, Jicai Yin and Bingchuan Bian

The grain size and grain distribution mode have a significant impact on the tribological properties of Babbitt alloy. The purpose of this paper is to study the effect of…

Abstract

Purpose

The grain size and grain distribution mode have a significant impact on the tribological properties of Babbitt alloy. The purpose of this paper is to study the effect of differentiated SnSb grain size distribution on the improvement of tribological properties of Babbitt alloy.

Design/methodology/approach

Babbitt (marked by babbitt-cr), with a differentiated SnSb grain size distribution, was fabricated using a selective zone laser surface treatment. Bare Babbitt with coarse SnSb grain was marked as babbitt-c, and Babbitt with refined SnSb grain was marked as babbitt-r. The microstructure, microhardness and wettability of specimens were tested. The tribological properties of babbitt-c, babbitt-r and babbitt-cr were evaluated under dry and lubricated conditions.

Findings

The microstructure transforms from single coarse SnSb grain distribution or single refined SnSb grain distribution to differentiated SnSb grain size distribution, as a result of selective zone laser surface treatment. Among three specimens of microhardness, babbitt-cr showed the highest microhardness. The lipophilicity property of babbitt-cr was better compared to babbitt-c. A mixture of coarse and refined grain is beneficial to improve the tribological properties of Babbitt alloy under dry condition. Furthermore, compared with babbitt-c, the wear resistance of babbitt-cr was enhanced under lubricated condition. However, the anti-wear property of babbitt-cr was not significantly improved relative to babbitt-r with an increase in the loads.

Originality/value

The study demonstrates that modulated different grain size alternating distribution modes can improve the tribological properties of Babbitt alloy.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2022-0259/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 October 2009

K.O. Sanusi and G.J. Oliver

Severe plastic deformation (SPD) has provided new opportunities in investigations of enhanced mechanical properties like high strength and ductility by permitting grain refinement…

1503

Abstract

Purpose

Severe plastic deformation (SPD) has provided new opportunities in investigations of enhanced mechanical properties like high strength and ductility by permitting grain refinement to a nanometer level, especially ultra‐fine grained and nanocrystalline metals and alloys. These materials have been attracting more and more research interest during the past few decades due to scientific curiosity and their engineering potentials with a significant advancement in their understanding. The purpose of this paper is to find the relationship between processing, structures and properties of these novel materials with the ultimate goal of producing a model to account for the grain size changes at the nano‐scale.

Design/methodology/approach

In this paper, specimens with various grain sizes from 23 to 80 μm are obtained via processing by SPD, using equal channel angular press (ECAP) technique. The effect of grain size on the hardness properties of nanostructured copper alloy has been investigated using micro‐hardness testing of the samples to test the mechanical properties of this material.

Findings

The results reveal that the copper alloys processed by SPD using ECAP technique after various passes differ in the grain size and mechanical properties. The hardness test exhibits grained size dependence according to Hall‐Petch relationship from room temperature. The increase in the hardness with number of passages suggest increasing in strain during deformation, as the passes increase the smaller grain size can be produced.

Originality/value

The paper usefully shows how nanostructured materials by SPD technique will offer a possible solution to the problem of using light metals for certain applications by increasing the strength of materials which could be used in structures where previously strength requirement in various industries, including such as, for example, transportation, medical devices and electronics. Understanding the relationship between processing, structures and properties will enhance the performance of metals and alloys in a target application which is important in improving the mechanical properties of engineering materials that are necessary fundamental for applications of lightweight materials and structures. The influences of structural parameters, such as grain size, grain shape on plastic deformation which is important parameters in study the mechanical properties of nanostructured materials.

Details

Journal of Engineering, Design and Technology, vol. 7 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 19 October 2023

Anuj Kumar and Mukul Shukla

Understanding and tailoring the solidification characteristics and microstructure evolution in as-built parts fabricated by laser powder bed fusion (LPBF) is crucial as they…

Abstract

Purpose

Understanding and tailoring the solidification characteristics and microstructure evolution in as-built parts fabricated by laser powder bed fusion (LPBF) is crucial as they influence the final properties. Experimental approaches to address this issue are time and capital-intensive. This study aims to develop an efficient numerical modeling approach to develop the process–structure (P-S) linkage for LPBF-processed Inconel 718.

Design/methodology/approach

In this study, a numerical approach based on the finite element method and cellular automata was used to model the multilayer, multitrack LPBF build for predicting the solidification characteristics (thermal gradient G and solidification rate R) and the average grain size. Validations from published experimental studies were also carried out to ensure the reliability of the proposed numerical approach. Furthermore, microstructure simulations were used to develop P-S linkage by evaluating the effects of key LPBF process parameters on G × R, G/R and average grain size. A solidification or G-R map was also developed to comprehend the P-S linkage.

Findings

It was concluded from the developed G-R map that low laser power and high scan speed will result in a finer microstructure due to an increase in G × R, but due to a decrease in G/R, columnar characteristics are also reduced. Moreover, increasing the layer thickness and decreasing the hatch spacing lowers the G × R, raises the G/R and generates a coarse columnar microstructure.

Originality/value

The proposed numerical modeling approach was used to parametrically investigate the effect of LPBF parameters on the resulting microstructure. A G-R map was also developed that enables the tailoring of the as-built LPBF microstructure through solidification characteristics by tuning the process parameters.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 March 2023

Rajat Kumar, Mahesh Kumar Gupta, Santosh Kumar Rai and Vinay Panwar

The changes in tensile behavior of polycrystalline nanocopper lattice with changes in temperature, average grain size (AGS) and strain rate, have been explored. The existence of a…

Abstract

Purpose

The changes in tensile behavior of polycrystalline nanocopper lattice with changes in temperature, average grain size (AGS) and strain rate, have been explored. The existence of a critical AGS has also been observed which shows that the Hall–Petch relationship behaves inversely.

Design/methodology/approach

Nanoscale deformation of polycrystalline nanocopper has been done in this study with the help of an embedded atom method (EAM) potential. Voronoi construction method has been employed for creating four polycrystals of nanocopper with different sizes. Statistical analysis has been used to examine the observations with emphasis on the polycrystal size effect on melting point temperature.

Findings

The study has found that the key stress values (i.e. elastic modulus, yield stress and ultimate tensile stress) are significantly influenced by the considered parameters. The increase in strain rate is observed to have an increasing impact on mechanical properties, whereas the increase in temperature degrades the mechanical properties. In-depth analysis of the deformation mechanism has been studied to deliver real-time visualization of grain boundary motion.

Originality/value

This study provides the relationship between required grain size variations for consecutive possible variations in mechanical properties and may help to reduce the trial processes in the synthesis of polycrystalline copper based on different temperatures and strain rates.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 December 2023

Murat Isik, Isa Emami Tabrizi, Raja Muhammad Awais Khan, Mehmet Yildiz, Eda Aydogan and Bahattin Koc

In recent years, additive manufacturing (AM) has started to be used for manufacturing real functional parts and assemblies for critical applications in aerospace, automotive, and…

Abstract

Purpose

In recent years, additive manufacturing (AM) has started to be used for manufacturing real functional parts and assemblies for critical applications in aerospace, automotive, and machinery industries. Most complex or assembled parts require internal features (IF) such as holes, channels, slots, or guides for locational and mating requirements. Therefore, it is critical to understand and compare the structural and mechanical properties of additively manufactured and conventionally machined IFs.

Design/methodology/approach

In this study, mechanical and microstructural properties of Inconel 718 (Inc718) alloy internal features, manufactured either as-built with AM or machining of additively manufactured (AMed) part thereafter were investigated.

Findings

The results showed that the average ultimate tensile strength (UTS) of additively manufactured center internal feature (AM-IF) is almost analogous to the machined internal feature (M-IF). However, the yield strength of M-IF is greater than that of AM-IF due the greater surface roughness of the internal feature in AM-IF, which is deemed to surpass the effect of microstructure on the mechanical performance. The results of digital image correlation (DIC) analysis suggest that AM-IF and M-IF conditions have similar strain values under the same stress levels but the specimens with as built IF have a more locally ductile region around their IF, which is confirmed by hardness test results. But this does not change global elongation behavior. The microstructural evolution starting from as-built (AB) and heat-treated (HT) samples to specimens with IF are examined. The microstructure of HT specimens has bimodal grain structure with d phase while the AB specimens display a very fine dendritic microstructure with the presence of carbides. Although they both have close values, machined specimens have a higher frequency of finer grains based on SEM images.

Originality/value

It was shown that the concurrent creation of the IF during AM can provide a final part with a preserved ultimate tensile strength and elongation but a decreased yield strength. The variation in UTS of AM-IF increases due to the surface roughness near the internal feature as compared to smooth internal surfaces in M-IF. Hence, the outcomes of this study are believed to be valuable for the industry in terms of determining the appropriate production strategy of parts with IF using AM and postprocessing processes.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 June 2022

Jun Zhu, Wei Luo, Wentao Xv, Shuigen Xv, XinYang Zhang and Jiefang Zhao

This paper aims to study the electrochemical corrosion performance of ultrafine-grained (UFG) Cu bulk in 0.5 M NaCl solution.

Abstract

Purpose

This paper aims to study the electrochemical corrosion performance of ultrafine-grained (UFG) Cu bulk in 0.5 M NaCl solution.

Design/methodology/approach

UFG Cu bulk were prepared by impacting at −196°C and following heat treatment. The electrochemical corrosion behaviors of coarse-grained (CG), impacted and subsequently annealed at 190°C Cu bulks were studied.

Findings

All the bulks displayed typical active-passive-transpassive behaviors (dual passive films without stable passive regions). The resistance to corrosion of impacted Cu bulk was notably superior to that of CG Cu bulk, and subsequently annealing further improved its corrosion resistance.

Social implications

Except for mechanical properties, corrosion performance has been considered to be one of the most important aspects in bulk UFG metallic materials research for the prospective engineering applications.

Originality/value

Cryogenic impacting could effectively reduce grain size of CG Cu bulk to UFG scale and induce high density dislocation. Subsequent annealing resulted in a further decrease of grain size even to nanoscale, as well as nanometer twins. The grain refinement, high density dislocation and annealing twins effectively enhance the passivation capability, resulting in an increase in the corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 April 2017

Izhan Abdullah, Muhammad Nubli Zulkifli, Azman Jalar and Roslina Ismail

The purpose of this paper is to investigate the relationship between microstructure and varied strain rates towards the mechanical properties and deformation behaviour of…

Abstract

Purpose

The purpose of this paper is to investigate the relationship between microstructure and varied strain rates towards the mechanical properties and deformation behaviour of Sn-3.0Ag-0.5Cu (SAC305) lead-free solder wire at room temperature.

Design/methodology/approach

Tensile tests with different strain rates of 1.5 × 10−6, 1.5 × 10−5, 1.5 × 10−4, 1.5 × 10−3, 1.5 × 10−2 and 1.5 × 10−1 s−1 at room temperature of 25°C were carried out on lead-free Sn-3.0Ag-0.5Cu (SAC305) solder wire. Stress-strain curves and mechanical properties such as yield strength, ultimate tensile strength and elongation were determined from the tensile tests. A microstructure analysis was performed by measuring the average grain size and the aspect ratio of the grains.

Findings

It was observed that higher strain rates showed pronounced dynamic recrystallization on the stress-strain curve. The increase in the strain rates also decreased the grain size of the SAC305 solder wire. It was found that higher strain rates had a pronounced effect on changing the deformation or shape of the grain in a longitudinal direction. An increase in the strain rates increased the tensile strength and ductility of the SAC solder wire. The primary deformation mechanism for strain rates below 1.5 × 10−1 s−1 was grain boundary sliding, whereas the deformation mechanism for strain rates of 1.5 × 10−1 s−1 was diffusional creep.

Originality/value

Most of the studies regarding the deformation behaviour of lead-free solder usually consider the effect of the elevated temperature. For the current analysis, the effect of the temperature is kept constant at room temperature to analyze the deformation of lead-free solder wire solely because of changes of strain rates, and this is the originality of this paper.

Details

Soldering & Surface Mount Technology, vol. 29 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 17 May 2022

Ahmed Bouchekhlal and Mohammed Boulesbaa

The purpose of this paper is to investigate the effects of the sintering temperature on the microstructural, morphological and electrical characteristics of Zinc oxide (ZnO)-based…

Abstract

Purpose

The purpose of this paper is to investigate the effects of the sintering temperature on the microstructural, morphological and electrical characteristics of Zinc oxide (ZnO)-based varistors.

Design/methodology/approach

This study used a conventional method to design and produce ZnO varistors by sintering ZnO powder with small amounts of various metal oxides. Furthermore, the effect of sintering temperature on varistor properties of (Bi, Co, Cr, Sb, Mn)-doped ZnO ceramics was investigated in the range of 1280–1350 °C.

Findings

The obtained results showed an EB value of 2109.79 V/cm, a Vgb value of 0.831 V and a nonlinear coefficient (α) value of 19.91 for sample sintered at temperature of 1300 °C. In addition, the low value of tan δ at low frequency range confirmed that the grain boundaries created in 1300 °C sintering temperature were obviously good.

Originality/value

Based on the previous research on the ZnO-based varistors, a thorough study was carried out on these components to improve their electrical characteristics. Thus, it is necessary that those varistors have low leakage current and low value of dissipation factor to ensure their good quality. High breakdown fields and nonlinearity coefficients are also required in such kind of components. The effect of sintering temperature on the varistor properties of the new compositions (zinc, bismuth, manganese, chrome, cobalt, antimony and silicon oxides)-doped ZnO ceramics was studied in the range of 1280–1350 °C. Also, the microstructure and the phase evolution of the samples sintered at various temperatures (1280 °C, 1300 °C, 1320 °C and 1350 °C) were investigated according to X-ray diffraction and scanning electron microscope measurements.

Details

Microelectronics International, vol. 39 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 2 January 2007

Y. Srinivasa Rao

The paper aims to study the variation of electrical properties like electrical resistivity and current noise of a polymer thick film resistor, namely, PVC‐graphite thick film…

Abstract

Purpose

The paper aims to study the variation of electrical properties like electrical resistivity and current noise of a polymer thick film resistor, namely, PVC‐graphite thick film resistor, with parameters such as volume fraction, grain size, temperature and high voltage.

Design/methodology/approach

A model is proposed to explain the observed variations, which assumes that the texture of the polymer thick film resistor consists of insulator granules coated with conducting particles and also having cavities. The resistivity of these resistors is controlled mainly by the contact resistance between the conducting particles and the number of contacts each particle with its neighbors.

Findings

The variation of resistivity with temperature and high voltage is explained with the help of the model and it is attributed to the change in contact area and number of contacts. The current noise of these resistors is controlled mainly by the average relative resistance fluctuations between the conducting particles and the number of contacts each particle with its neighbors.

Originality/value

The variation of current noise with high voltage has also been explained with the help of this model and it is attributed to the change in number of conducting particles and conducting layers.

Details

Microelectronics International, vol. 24 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 5 May 2015

Archana Rethinam, Vinoo D. Shivakumar, L. Harish, M.B. Abhishek, G.V. Ramana, Madhusudana R., R. Sah and S. Manjini

The application of new technologies requires, however, modern rolling mills. Indeed, in manufacturing plants of older types, strict compliance with the developed rolling regimes…

Abstract

Purpose

The application of new technologies requires, however, modern rolling mills. Indeed, in manufacturing plants of older types, strict compliance with the developed rolling regimes is not always feasible. Improving the mechanical properties in such cases is possible only by means of cooling. Compressive deformation behavior of carbon–manganese (C-Mn) grade has been investigated at temperatures ranging from 800-900°C and strain rate from 0.01-50 s−1 on Gleeble-3800, a thermo-mechanical simulator. Simulation studies have been conducted mainly to observe the microstructural changes for various strain rate and deformation temperatures at a constant strain of 0.5 and a cooling rate of 20°C s−1.

Design/methodology/approach

The project begins with simulation of a hot rolling condition using the thermo-mechanical simulator; this was followed by microstructural examination and identification of phases present by using an optical microscope for hot-rolled coil and simulated samples; grain size measurement and size distribution studies; and optimization of finishing temperature, coiling temperature and cooling rate by mimicking plant processing parameters to improve the mechanical properties.

Findings

As the strain rate and temperature increase, pearlite banding decreases gradually and finally gets completely eliminated, thereby improving the mechanical properties. True stress–strain curves were plotted to extrapolate the effect of strain-hardening and strain rate sensitivity on austenite (γ) and austenite–ferrite (γ-a) regions. To validate the effect of strain rate and temperature over the grain size, the hardness of simulated samples was measured using the universal hardness tester and the corresponding tensile strength was found from the standard hardness chart.

Practical implications

The results of the study carried out have projected a new technology of thermo-mechanical simulation for the studied C-Mn grade. These results were used to optimize the plant processing parameter like finishing and coiling temperature and finishing stands strain rate.

Originality/value

By controlling the hot rolling conditions like finishing, coiling temperature and cooling rate, structures differing in mechanical properties can be obtained for the same material. Accurate understanding of a structure being formed when different temperatures are applied enables the control of the process that assures intended structures and mechanical properties are achieved.

Details

Journal of Engineering, Design and Technology, vol. 13 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of over 11000