Search results

1 – 10 of 10
Article
Publication date: 7 March 2022

Geetha Margret Soundri, Kavitha S. and Senthil Kumar B.

The essential properties of active sports fabrics are moisture management, quick-drying, body heat management and thermal regulations. Fibre type, blending nature, yarn and fabric

Abstract

Purpose

The essential properties of active sports fabrics are moisture management, quick-drying, body heat management and thermal regulations. Fibre type, blending nature, yarn and fabric structure and the finishing treatment are the key parameters that influenced the performance of the clothing meant for sportswear. This study aims to investigate the effect of fibre blending and structural tightness factors on bi-layer sport fabric's dimensional, moisture management and thermal properties.

Design/methodology/approach

In this study, 12 different bi-layer inter-lock fabrics were produced. Polyester filament (120 Denier) yarn was fed to form the backside of the fabric, and the face side was varied with cotton, modal, wool and soya spun yarns of 30sNe. Three different types of structural tightness factors were considered, such as low, medium and high were taken for sample development. The assessment towards dimensional, moisture management and thermal properties was carried out on all the samples.

Findings

The polyester-modal blend with a high tightness factor has shown maximum overall moisture management capability (OMMC) values of 0.73 and air permeability of 205.3 cm3/cm2/s. The same sample has shown comparatively higher thermal conductivity of 61.72 × 10–3 W m-1 °C-1(Under compression state) and 58.45 × 10–3 W m-1 °C-1 (under recovery state). In the case of surface roughness is concerned, polyester-modal blends have shown the lowest surface roughness, surface roughness amplitude and surface friction co-efficient. Among the selected fibre combinations, the overall comfort level of polyester-modal bi-layer knitted structure with a higher tightness factor is appreciable. Polyester-modal is more suitable for active sportswear among the four fiber blend combinations.

Research limitations/implications

The outcome of this study will help to gain a better understanding of fibre blends, structural tightness factor and other process specifications for the development of bi-layer fabric for active sportswear applications. The dynamic functional testing methods (Moisture management and Thermal properties) were carried out to simulate the actual wearing environment of the sports clothing. This study will create a new scope of research opportunities in the field of bi-layer sports textiles.

Originality/value

This study was conducted to explore the influence of fibre blend and structural tightness factor on the comfort level of sportswear and to find the suitable fibre blend for active sportswear clothing.

Details

Research Journal of Textile and Apparel, vol. 27 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 17 April 2023

Yang Yang, Weijing Zhang, Zheng Liu and Peihua Zhang

The purpose of this work is to investigate the effect of filament composition with different specifications on the thermal comfort properties of bi-layer knitted fabrics.

Abstract

Purpose

The purpose of this work is to investigate the effect of filament composition with different specifications on the thermal comfort properties of bi-layer knitted fabrics.

Design/methodology/approach

In this paper eight bi-layer knitted fabrics with the same knitting structure but different filament compositions were prepared, and the thermal-wet comfort properties of these fabrics were examined. According to experimental data, the effect of filament composition on the thermal comfort properties of fabric was analyzed.

Findings

The increasing difference of hydrophilicity between inner and outer layers resulted in the enhancement of moisture management properties. Better thermal-physiology performance was exhibited by fabrics made up of finer and circular section fibers. Excellent thermal transfer, drying performance and one-way water transport capacity benefited the improvement of dynamic cooling effect of fabrics.

Originality/value

This work provides a useful and effective method for the development of bi-layer knitted fabric applied for sports and summer clothing.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 March 2023

Gopalakrishnan Palaniappan, Anita Rachel D., Sentilkumar C.B., Selvaraj Senthil Kumar, Senthil Kumar B. and Devaki E.

Eri is a short-stapled fibre that possesses an excellent soft feel and warmness to the wearer. Investigation of thermal comfort and moisture properties of Eri silk fabric provides…

Abstract

Purpose

Eri is a short-stapled fibre that possesses an excellent soft feel and warmness to the wearer. Investigation of thermal comfort and moisture properties of Eri silk fabric provides the enhanced commercial scope for Eri silk-based clothing.

Design/methodology/approach

To examine the impact of process factors on thermal and moisture properties, three different single knit Eri silk structures were made, each with a different loop length and yarn count. Three different linear densities of Eri silk spun yarn (15, 20 and 25 tex) were selected. Three distinct knitted constructions, including plain jersey, popcorn and cellular blister, were created, along with two different loop lengths.

Findings

The novel cellular blister structure has shown appreciable thermal comfort properties than the other two structures. Yarn fineness and loop length were significant with most of the thermal comfort properties.

Research limitations/implications

In recent times the Eri silk production is completely domesticated, so the new demand can easily be met by the producers. This research will create a new scope for Eri silk fibres in sportswear and leisure wear.

Originality/value

This study was conducted to explore the influence of knit structure, loop length and yarn count on the thermal comfort properties of the clothing.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 23 May 2023

Sibel Kaplan and Havva Tokgoz

Sleep quality, a crucial parameter for health and life performance, is affected by mattress components; particularly mechanical and thermal comfort management ability of the upper…

Abstract

Purpose

Sleep quality, a crucial parameter for health and life performance, is affected by mattress components; particularly mechanical and thermal comfort management ability of the upper layers. The aim of this study is to investigate effects of quilted mattress ticking fabric material (polyester, polypropylene, viscose, lyocell and their blends) on thermal comfort of the bedding system by objective and subjective measurements.

Design/methodology/approach

The permeability (air and water vapour), heat transfer, water absorption, transfer and drying behaviours of knitted quilted fabrics which influence the thermal comfort of the bedding system were investigated. Subjective coolness and dampness evaluations were gathered by forearm and hand-palm tests to provide more realistic discussion in light of fabric characteristics.

Findings

According to the results, polypropylene can be suggested for winter use with its higher air and water vapour permeabilities, lower thermal absorption and conductivities and warmer evaluation results. Lyocell can be suggested for summer use with also high permeabilities, higher thermal absorption and conductivities and cooler evaluation results. Polyester and viscose may also be considered for winter and summer in turn as a result of thermal feelings they create.

Originality/value

In addition to fabric thermal, permeability, liquid absorption and transfer properties, this study also includes subjective coolness and dampness evaluations which can provide realistic results regarding the coolness-to-touch and liquid transfer performances of mattress ticking fabrics. The relationships among objective and subjective data were investigated and the proposed subjective evaluation techniques can be used for different products.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 March 2023

Elvira Sarybayeva, Meruert Kuramysova, Mirabzal Mukimov, Mukhamejan Shardarbek, Zhansaule Rakhmanova, Kamshat Makhanbetaliyeva, Farkhad Tashmukhamedov, Indira Jurinskaya and Marzhan Kalmakhanova

This study aims to investigate the effects of the number of miss stitches and tuck stitches in the knit structure on the technological parameters and physical and mechanical…

Abstract

Purpose

This study aims to investigate the effects of the number of miss stitches and tuck stitches in the knit structure on the technological parameters and physical and mechanical properties of knitted fabrics.

Design/methodology/approach

The number of miss stitches and tuck stitches was increased from 3.6% to 8.3%, and the influence of this increase on knitwear properties was analyzed.

Findings

It was found that an increase from 3.6% to 8.3% leads to a decrease in the stretchability of knitwear in width from 330% to 290% and in length from 112% to 95%. With an increase from 5% to 6.3%, the surface density of knitwear decreases by 11.6 g. And with an increase from 6.3% to 8.3%, the surface density of knitwear decreases by 11.8 g. It was also found that the presence of miss stitches and tuck stitches in the knit structure reduces the material consumption, and the presence of miss stitches increases the shape stability of the knitted fabric.

Originality/value

It was concluded that the number of miss stitches and tuck stitches has the strongest influence on surface density, followed by volume density.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 September 2022

Senthil Kumar B., Anita Rachel D. and Sentil Kumar C.B.

Eri silk fiber has superior thermal insulation behavior, better softness than cotton fiber. However, Eri silk’s use in the commercial arena has not yet taken off. The purpose of…

Abstract

Purpose

Eri silk fiber has superior thermal insulation behavior, better softness than cotton fiber. However, Eri silk’s use in the commercial arena has not yet taken off. The purpose of the study is to explore the comfort properties of the fabric, which enhances the commercial acceptance of Eri silk clothing.

Design/methodology/approach

In this investigation, three different single knit Eri silk structures were produced with different loop lengths and yarn counts to analyze the influence of process variables on low-stress mechanical properties. To execute the research work, Eri silk spun yarn of three different linear densities (15 tex, 20 tex, 25 tex) were chosen. Three different knitted structures were produced, such as single jersey, popcorn and cellular blister, and two different loop lengths were also selected.

Findings

The cellular blister structure has shown appreciable low-stress properties next highest position was attained by the popcorn structure. Yarn fineness and loop length were significant with most of the low-stress properties.

Research limitations/implications

The findings of this research will contribute to a greater awareness of Eri silk knitted fabric and its process parameters in relation to its commercial utility.

Originality/value

This study was conducted to explore the influence of knit structure, loop length and yarn count on the low-stress properties of Eri silk-based thermal clothing.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 9 February 2021

Brigita Kalendraite, Jolita Krisciunaite and Daiva Mikucioniene

The purpose of this research was to find the influence of sublimation process on air permeability and water absorption dynamics of knitted and woven polyester-based fabrics.

Abstract

Purpose

The purpose of this research was to find the influence of sublimation process on air permeability and water absorption dynamics of knitted and woven polyester-based fabrics.

Design/methodology/approach

Three different sublimation designs were prepared and applied (keeping the same sublimation parameters) for eight variants of knitted and four variants of woven polyester-based fabrics. Air permeability and water absorption dynamics during 180s period was measured and compared before and after the sublimation process.

Findings

According to the obtained results, high temperature and pressure applied in sublimation process have influence on the porosity and air permeability of knitted fabrics; however, the influence on water absorption dynamics is minimal. Sublimation design dos not have any influence on the mentioned properties.

Originality/value

The obtained results of the sublimation process influence on air permeability and water absorption dynamics of knitted and woven polyester-based fabrics will help to understand how sublimation process can affect comfort properties of textile fabrics.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 29 January 2021

Intan Nadirah Mohd Yusof, Mohd Rozi Ahmad, Nur Ain Yusof, Mohamad Faizul Yahya, Ibiwani Alisa Hussain, Raja Mohammed Firhad Raja Azidin and Ahmad Munir Che Muhamed

The purpose of this paper is to investigate the perceived thermal comfort experienced by active Muslim women (AMW) wearing hijabs determined by their experience of comfort…

Abstract

Purpose

The purpose of this paper is to investigate the perceived thermal comfort experienced by active Muslim women (AMW) wearing hijabs determined by their experience of comfort sensation while doing sports activities or regular exercises. This study also examines whether the casual hijabs which are widely used among AMW are able to supply the appropriate comfort for active purposes.

Design/methodology/approach

This study used the quantitative method using survey questionnaires to collect 100 primary data obtained from AMW respondents who are university students located around the Klang Valley region in Malaysia.

Findings

Based on the overall results, this study suggests that the common hijabs that are used for casual applications do not offer sufficient comfort to Muslim women while performing sports activities or regular exercises.

Research limitations/implications

The outcome of this study will help to gain a better understanding on hijab preferences and comfort experienced from the viewpoint of regular hijab users. The information will assist industries to consider the selection of the right materials when developing sportswear hijabs to provide better comfort for more AMW in the near future. The method used in this study is useful to gain information on consumer’s profile and value-added details about the discomfort aspects of hijab which are scarce in the existing literature on thermal comfort.

Originality/value

This study was conducted to explore the type of hijabs commonly worn by AMW while performing sports activities and to obtain their views on the perceived thermal comfort.

Details

Research Journal of Textile and Apparel, vol. 25 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 March 2013

G. Gkikas, A. Paipetis, A. Lekatou, N.M. Barkoula, D. Sioulas, B. Canflanca and S. Florez

Bonded composite patches are ideal for aircraft structural repair as they offer enhanced specific properties, case‐tailored performance and excellent corrosion resistance. Bonding…

Abstract

Purpose

Bonded composite patches are ideal for aircraft structural repair as they offer enhanced specific properties, case‐tailored performance and excellent corrosion resistance. Bonding minimizes induced stress concentrations unlike mechanical fastening, whilst it seals the interface between the substrate and the patch and reduces the risk of fretting fatigue that could occur in the contact zone. The purpose of this paper is to assess the electrochemical corrosion performance and the environmentally induced mechanical degradation of aerospace epoxy adhesives when carbon nanotubes (CNTs) are used as an additive to the neat epoxy adhesive.

Design/methodology/approach

The galvanic effect between aluminium substrates and either plain or CNT enhanced carbon fibre composites, was measured using a standard galvanic cell. Also, rest potential measurements and cyclic polarizations were carried out for each of the studied systems. The effect of the CNT introduction to a carbon fiber reinforced plastic (CFRP) on the adhesion efficiency, before and after salt‐spraying for 10, 20 and 30 days, was studied. The adhesion efficiency was evaluated by the single lap joint test.

Findings

The corrosion behaviour of the system is polymer matrix type dependent. CNT introduction to a CFRP may induce small scale localized degradation.

Originality/value

This paper fulfills an identified need to study how the shear strength and the response to galvanic corrosion are affected by epoxy resins modified by carbon nanotubes.

Details

International Journal of Structural Integrity, vol. 4 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 April 1973

At the Royal Society of Health annual conference, no less a person than the editor of the B.M.A.'s “Family Doctor” publications, speaking of the failure of the anti‐smoking…

Abstract

At the Royal Society of Health annual conference, no less a person than the editor of the B.M.A.'s “Family Doctor” publications, speaking of the failure of the anti‐smoking campaign, said we “had to accept that health education did not work”; viewing the difficulties in food hygiene, there are many enthusiasts in public health who must be thinking the same thing. Dr Trevor Weston said people read and believed what the health educationists propounded, but this did not make them change their behaviour. In the early days of its conception, too much was undoubtedly expected from health education. It was one of those plans and schemes, part of the bright, new world which emerged in the heady period which followed the carnage of the Great War; perhaps one form of expressing relief that at long last it was all over. It was a time for rebuilding—housing, nutritional and living standards; as the politicians of the day were saying, you cannot build democracy—hadn't the world just been made “safe for democracy?”—on an empty belly and life in a hovel. People knew little or nothing about health or how to safeguard it; health education seemed right and proper at this time. There were few such conceptions in France which had suffered appalling losses; the poilu who had survived wanted only to return to his fields and womenfolk, satisfied that Marianne would take revenge and exact massive retribution from the Boche!

Details

British Food Journal, vol. 75 no. 4
Type: Research Article
ISSN: 0007-070X

1 – 10 of 10