Search results

1 – 10 of over 22000
Article
Publication date: 19 March 2020

Xiaoling Li and Shuang shuang Liu

For the large-scale power grid monitoring system equipment, its working environment is increasingly complex and the probability of fault or failure of the monitoring system is…

Abstract

Purpose

For the large-scale power grid monitoring system equipment, its working environment is increasingly complex and the probability of fault or failure of the monitoring system is gradually increasing. This paper proposes a fault classification algorithm based on Gaussian mixture model (GMM), which can complete the automatic classification of fault and the elimination of fault sources in the monitoring system.

Design/methodology/approach

The algorithm first defines the GMM and obtains the detection value of the fault classification through a method based on the causal Mason Young Tracy (MYT) decomposition under each normal distribution in the GMM. Then, the weight value of GMM is used to calculate weighted classification value of fault detection and separation, and by comparing the actual control limits with the classification result of GMM, the fault classification results are obtained.

Findings

The experiment on the defined non-thermostatic continuous stirred-tank reactor model shows that the algorithm proposed in this paper is superior to the traditional algorithm based on the causal MYT decomposition in fault detection and fault separation.

Originality/value

The proposed algorithm fundamentally solves the problem of fault detection and fault separation in large-scale systems and provides support for troubleshooting and identifying fault sources.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 13 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 January 2024

Xingxing Li, Shixi You, Zengchang Fan, Guangjun Li and Li Fu

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health…

Abstract

Purpose

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health care. The purpose of this paper is to summarize the current state of the field, identify challenges and limitations and discuss future prospects for the development of saliva-based electrochemical sensors.

Design/methodology/approach

The paper reviews relevant literature and research articles to examine the latest developments in electrochemical sensing technologies for saliva analysis. It explores the use of various electrode materials, including carbon nanomaterial, metal nanoparticles and conducting polymers, as well as the integration of microfluidics, lab-on-a-chip (LOC) devices and wearable/implantable technologies. The design and fabrication methodologies used in these sensors are discussed, along with sample preparation techniques and biorecognition elements for enhancing sensor performance.

Findings

Electrochemical sensors for salivary analyte detection have demonstrated excellent potential for noninvasive, rapid and cost-effective diagnostics. Recent advancements have resulted in improved sensor selectivity, stability, sensitivity and compatibility with complex saliva samples. Integration with microfluidics and LOC technologies has shown promise in enhancing sensor efficiency and accuracy. In addition, wearable and implantable sensors enable continuous, real-time monitoring of salivary analytes, opening new avenues for personalized health care and disease management.

Originality/value

This review presents an up-to-date overview of electrochemical sensors for analyte detection in saliva, offering insights into their design, fabrication and performance. It highlights the originality and value of integrating electrochemical sensing with microfluidics, wearable/implantable technologies and point-of-care testing platforms. The review also identifies challenges and limitations, such as interference from other saliva components and the need for improved stability and reproducibility. Future prospects include the development of novel microfluidic devices, advanced materials and user-friendly diagnostic devices to unlock the full potential of saliva-based electrochemical sensing in clinical practice.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 21 November 2023

Lochan Singh and Vijay Singh Sharanagat

Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up…

158

Abstract

Purpose

Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up against sundry micro-/macro-environmental conditions. Assurance of food health and safety thus gained immense importance, for which bio-sensing technology proved very promising in the detection and quantification of food-borne pathogens. Considering the importance, different studies have been performed, and different biosensors have been developed. This study aims to summarize the different biosensors used for the deduction of food-borne pathogens.

Design/methodology/approach

The present review highlights different biosensors developed apropos to food matrices, factors governing their selection, their potential and applicability. The paper discusses some related key challenges and constraints and also focuses on the needs and future research prospects in this field.

Findings

The shift in consumers’ and industries’ perceptions directed the further approach to achieve portable, user and environmental friendly biosensing techniques. Despite of these developments, it was still observed that the comparison among the different biosensors and their categories proved tedious on a single platform; since the food matrices tested, pathogen detected or diagnosed, time of detection, etc., varied greatly and very few products have been commercially launched. Conclusively, a challenge lies in front of food scientists and researchers to maintain pace and develop techniques for efficiently catering to the needs of the food industry.

Research limitations/implications

Biosensors deduction limit varied with the food matrix, type of organism, material of biosensors’ surface, etc. The food matrix itself consists of complex substances, and various types of food are available in nature. Considering the diversity of food there is a need to develop a universal biosensor that can be used for all the food matrices for a pathogen. Further research is needed to develop a pathogen-specific biosensor that can be used for all the food products that may have accuracy to eliminate the traditional method of deduction.

Originality/value

The present paper summarized and categorized the different types of biosensors developed for food-borne pathogens.

Graphical abstract

Details

Nutrition & Food Science , vol. 54 no. 1
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 24 October 2021

Mulayam Singh Gaur, Rajni Yadav, Mamta Kushwah and Anna Nikolaevna Berlina

This information will be useful in the selection of materials and technology for the detection and removal of mercury ions at a low cost and with high sensitivity and selectivity…

124

Abstract

Purpose

This information will be useful in the selection of materials and technology for the detection and removal of mercury ions at a low cost and with high sensitivity and selectivity. The purpose of this study is to provide the useful information for selection of materials and technology to detect and remove the mercury ions from water with high sensitivity and selectivity. The purpose of this study is to provide the useful information for selection of materials and technology to detect and remove the mercury ions from water with high sensitivity and selectivity.

Design/methodology/approach

Different nano- and bio-materials allowed for the development of a variety of biosensors – colorimetric, chemiluminescent, electrochemical, whole-cell and aptasensors – are described. The materials used for their development also make it possible to use them in removing heavy metals, which are toxic contaminants, from environmental water samples.

Findings

This review focuses on different technologies, tools and materials for mercury (heavy metals) detection and remediation to environmental samples.

Originality/value

This review gives up-to-date and systemic information on modern nanotechnology methods for heavy metal detection. Different recognition molecules and nanomaterials have been discussed for remediation to water samples. The present review may provide valuable information to researchers regarding novel mercury ions detection sensors and encourage them for further research/development.

Details

Sensor Review, vol. 41 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 7 December 2022

Tunan Chen, Fengxiang Ma, Yue Zhao, Zhenghai Liao, Zongjia Qiu and Guoqiang Zhang

This paper aims to establish a photoacoustic detection system for SO2 using UV-LED and testify its feasibility for sensitive measurement. The work in this paper can avoid…

Abstract

Purpose

This paper aims to establish a photoacoustic detection system for SO2 using UV-LED and testify its feasibility for sensitive measurement. The work in this paper can avoid potential crossover interference in infrared (IR) range and also balance the capability and cost of feasible excitation for photoacoustic detection system.

Design/methodology/approach

In this experimental work, a cantilever-enhanced–based photoacoustic SO2 detection system using an ultraviolet (UV) LED light source with a light power of 4 mW as the excitation was established.

Findings

A feasible photoacoustic detection system for SO2 using UV-LED was established. Experimental results demonstrate that the detection limit of the system can reach the level of 0.667 ppm, which can serve as a reference for the application of PAS in insulation fault diagnosis.

Originality/value

This work investigated the potential of using ultraviolet photoacoustic spectroscopy to detect trace SO2, which provided an ideal replacement of infrared-laser-based detection system. In this paper, a photoacoustic detection system using LED with a low light power was established. Low light power requirement can expand the options of light sources accordingly. In this paper, the absorption characteristics of SO2 in the presented detection system and ultraviolet range were studied. And the detection limit of the presented system was given. Both of which can provide reference to SO2 detection in ambient SF6.

Details

Sensor Review, vol. 42 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 January 2015

Xingya Wang and Guangchang Pang

This paper aims to provide a detailed review of weak interaction biosensors and several common biosensor methods for magnifying signals, as well as judiciously guide readers…

Abstract

Purpose

This paper aims to provide a detailed review of weak interaction biosensors and several common biosensor methods for magnifying signals, as well as judiciously guide readers through selecting an appropriate detecting system and signal amplification method according to their research and application purpose.

Design/methodology/approach

This paper classifies the weak interactions between biomolecules, summarizes the common signal amplification methods used in biosensor design and compares the performance of different kinds of biosensors. It highlights a potential electrochemical signal amplification method: the G protein signaling cascade amplification system.

Findings

Developed biosensors which, based on various principles, have their own strengths and weaknesses have met the basic detection requirements for weak interaction between biomolecules: the selectivity, sensitivity and detection limit of biosensors have been consistently improving with the use of new signal amplification methods. However, most of the weak interaction biosensors stop at the research stage; there are only a minority realization of final commercial application.

Originality/value

This paper evaluates the status of research and application of weak interaction biosensors systematically. The G protein signaling cascade amplification system proposal offers a new avenue for the research and development of electrochemical biosensors.

Article
Publication date: 8 November 2019

Dinesh Ramkrushna Rotake, Anand D. Darji and Nitin S. Kale

This paper aims to propose a new microfluidic portable experimental platform for quick detection of heavy metal ions (HMIs) in picomolar range. The experimental setup uses a…

270

Abstract

Purpose

This paper aims to propose a new microfluidic portable experimental platform for quick detection of heavy metal ions (HMIs) in picomolar range. The experimental setup uses a microfabricated piezoresistive sensor (MPS) array of eight cantilevers with ion-selective self-assembled monolayer's (SAM).

Design/methodology/approach

Most of the components used in this experimental setup are battery operated and, hence, portable to perform the on-field experiments. HMIs (antigen) and thiol-based SAM (antibody) interaction start bending the microcantilever. This results in a change of resistance, which is directly proportional to the surface stress produced due to the mass of targeted HMIs. The authors have used Cysteamine and 4-Mercaptobenzoic acid as a thiol for creating SAM to test the sensitivity and identify the suitable thiol. Some of the cantilevers are blocked using acetyl chloride to use as a reference for error detection.

Findings

The portable experimental platform achieves very small detection time of 10-25 min with a lower limit of detection (LOD) 0.762 ng (6.05 pM) for SAM of Cysteamine and 4-Mercaptobenzoic acid to detect Mn2+ ions. This technique has excellent potential and capability to selectively detect Hg2+ ions as low as 2.43 pM/mL using SAM of Homocysteine (Hcys)-Pyridinedicarboxylic acid (PDCA).

Research limitations/implications

As microcantilever is very thin and fragile, it is challenging to apply a surface coating to have selective detection using Nanadispenser. Some of the cantilevers get broken during this process.

Originality/value

The excessive use and commercialization of NPs are quickly expanding their toxic impact on health and the environment. Also, LOD is limited to nanomolar range. The proposed method used the combination of thin-film, NPs, and MEMS-based technology to overcome the limitation of NPs-based technique and have picomolar range of HMIs detection.

Article
Publication date: 1 January 2007

O.O. Adejumo and J.O. Ojo

The results of trial experiments carried out with a computer simulation model of total reflection X‐ray fluorescence, TXRF system to determine optimum conditions for detecting…

Abstract

The results of trial experiments carried out with a computer simulation model of total reflection X‐ray fluorescence, TXRF system to determine optimum conditions for detecting certain elements of interest under various analytical conditions in a given ten‐element standard sample is presented in this paper. Results of these trial experiments show that the detectability of elements improved with increasing applied voltages up to about 43kV (for a Molybdenum anode TXRF spectrometer) and atomic number of elements. Variation of geometry such as the glancing incidence angle of the excitation beam reflected slight increase in minimum detection limit, MDL values as the angle of incidence is reduced from an optimum value of 1.6mradian to 1.0mradian. The nature of the sample support was observed to affect the detectability of the elements as good detection limits were obtained if gold is used as sample holder..

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 29 June 2020

Dinesh Ramkrushna Rotake, Anand Darji and Jitendra Singh

The purpose of this paper is a new thin-film based sensor proposed for sensitive and selective detection of mercury (Hg2+) ions in water. The thin-film platform is easy to use and…

Abstract

Purpose

The purpose of this paper is a new thin-film based sensor proposed for sensitive and selective detection of mercury (Hg2+) ions in water. The thin-film platform is easy to use and quick for heavy metal ions (HMIs) detection in the picomolar range. Ion-selective self-assembled monolayer's (SAM) of thiol used for the detection of HMIs above the Au/Ti top surface.

Design/methodology/approach

A thin-film based platform is suitable for the on-field experiments and testing of water samples. HMIs (antigen) and thiol-based SAM (antibody) interaction results change in surface morphology and topography. In this study, the authors have used different characterization techniques to check the selectivity of the proposed method. This change in the morphology and topography of thin-film sensor checked with Fourier-transform infrared spectroscopy, surface-enhanced Raman scattering spectroscopy, atomic force microscopy and scanning electron microscopy with energy dispersive x-ray analysis used for high-resolution images.

Findings

This thin-film based platform is straightforward to use and suitable for real-time detection of HMIs at the picomolar range. This thin-film based sensor platform capable of achieving a lower limit of detection (LOD) 27.42 ng/mL (136.56 pM) using SAM of Homocysteine-Pyridinedicarboxylic acid to detect Hg2+ ions.

Research limitations/implications

A thin-film based technology is perfect for real-time testing and removal of HMIs, but the LOD is higher as compared to microcantilever-based devices.

Originality/value

The excessive use and commercialization of nanoparticle (NPs) are quickly expanding their toxic impact on health and the environment. The proposed method used the combination of thin-film and NPs, to overcome the limitation of NPs-based technique and have picomolar (136.56 pM) range of HMIs detection. The proposed thin-film-based sensor shows excellent repeatability and the method is highly reliable for toxic Hg2+ ions detection. The main advantage of the proposed thin-film sensor is its ability to selectively remove the Hg2+ ions from water samples just like a filter and a sensor for detection at picomolar range makes this method best among the other current-state of the art techniques.

1 – 10 of over 22000