Search results

1 – 10 of 77
Article
Publication date: 3 November 2021

Elena Proskurnina, Galina Portnova, Maria Ivanova and Svetlana Sokolova

An electroencephalography (EEG) examination may cause psychological stress in children with autism that can interfere with the examination results. The objective information on…

Abstract

Purpose

An electroencephalography (EEG) examination may cause psychological stress in children with autism that can interfere with the examination results. The objective information on the presence or absence of psycho-emotional stress in patients can help interpret electroencephalograms. This paper aimed to demonstrate the potential of noninvasive objective diagnostics of emotional stress in autistic children undergoing an EEG examination based on analysis of saliva.

Design/methodology/approach

This study involved 19 children with autism spectrum disorder (ASD) (ICD-10 F84.0); the mean age was seven years. During EEG examination of the children, behavioral parameters were assessed. The activity of cytochrome P450 reductase (CYPOR) in saliva was measured before and after the EEG procedure using lucigenin-enhanced nicotinamide adenine dinucleotide phosphate-stimulated chemiluminescence assay.

Findings

Significant differences in CYPOR activity were found between the children who were distressed during an EEG examination and the children without behavioral disturbances (Mann–Whitney test, p = 0.002). Thus, the EEG examination resulted in an increase in CYPOR activity in saliva cells, which may prove the stressful effect of this procedure on autistic children.

Originality/value

The chemiluminescent indices reflecting the activity of microsomal CYPOR in cells presenting in saliva correlate with the absence or presence of psychological stress in children; this phenomenon can be explained by an increased metabolism of the stress hormone, cortisol, by the cytochrome P450 microsomal system. Furthermore, the proposed method is completely safe, noninvasive, rapid (recording time is 20 min), inexpensive and promising for an objective assessment of psycho-emotional stress in autistic children undergoing medical examinations.

Details

Advances in Autism, vol. 8 no. 4
Type: Research Article
ISSN: 2056-3868

Keywords

Article
Publication date: 1 June 1995

Bonawentura Kochel

Discusses the efficiency of a cybernetic approach to non‐oscillatory luminescence processes, generated by perturbed biosystems, and applies it to oscillatory luminescence…

Abstract

Discusses the efficiency of a cybernetic approach to non‐oscillatory luminescence processes, generated by perturbed biosystems, and applies it to oscillatory luminescence processes. Constructs multiplicative stochastic models of oscillatory bio‐ and chemiluminescence processes, generated by some perturbed/stimulated biosystems (a temperature‐stimulated soybean root system, light‐stimulated microporocytes of larch, antiviral drug‐treated vero cells infected by Herpes simplex virus). Determines a correlation structure for these models by analysing their transfer functions. Uses the memory function approach to compare and contrast the oscillatory processes with their non‐oscillatory analogs. Formulates a hypothesis about the dependence between the persistence and the oscillatory behaviour of biosystems and proposes stochastic perturbation measures founded on those multiplicative models.

Details

Kybernetes, vol. 24 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Abstract

Purpose

This study aims to estimate the overall SARS-CoV-2 seroprevalence and evaluate the accuracy of an antibody rapid test compared to a reference serological assay during a COVID-19 outbreak in a prison complex housing over 13,000 prisoners in Brasília.

Design/methodology/approach

The authors obtained a randomized, stratified representative sample of each prison unit and conducted a repeated serosurvey among prisoners between June and July 2020, using a lateral-flow immunochromatographic assay (LFIA). Samples were also retested using a chemiluminescence enzyme immunoassay (CLIA) to compare SARS-CoV-2 seroprevalence and 21-days incidence, as well as to estimate the overall infection fatality rate (IFR) and determine the diagnostic accuracy of the LFIA test.

Findings

This study identified 485 eligible individuals and enrolled 460 participants. Baseline and 21-days follow-up seroprevalence were estimated at 52.0% (95% CI 44.9–59.0) and 56.7% (95% CI 48.2–65.3) with LFIA; and 80.7% (95% CI 74.1–87.3) and 81.1% (95% CI 74.4–87.8) with CLIA, with an overall IFR of 0.02%. There were 78.2% (95% CI 66.7–89.7) symptomatic individuals among the positive cases. Sensitivity and specificity of LFIA were estimated at 43.4% and 83.3% for IgM; 46.5% and 91.5% for IgG; and 59.1% and 77.3% for combined tests.

Originality/value

The authors found high seroprevalence of anti-SARS-CoV-2 antibodies within the prison complex. The occurrence of asymptomatic infection highlights the importance of periodic mass testing in addition to case-finding of symptomatic individuals; however, the field performance of LFIA tests should be validated. This study recommends that vaccination strategies consider the inclusion of prisoners and prison staff in priority groups.

Details

International Journal of Prisoner Health, vol. 19 no. 2
Type: Research Article
ISSN: 1744-9200

Keywords

Article
Publication date: 24 October 2021

Mulayam Singh Gaur, Rajni Yadav, Mamta Kushwah and Anna Nikolaevna Berlina

This information will be useful in the selection of materials and technology for the detection and removal of mercury ions at a low cost and with high sensitivity and selectivity…

124

Abstract

Purpose

This information will be useful in the selection of materials and technology for the detection and removal of mercury ions at a low cost and with high sensitivity and selectivity. The purpose of this study is to provide the useful information for selection of materials and technology to detect and remove the mercury ions from water with high sensitivity and selectivity. The purpose of this study is to provide the useful information for selection of materials and technology to detect and remove the mercury ions from water with high sensitivity and selectivity.

Design/methodology/approach

Different nano- and bio-materials allowed for the development of a variety of biosensors – colorimetric, chemiluminescent, electrochemical, whole-cell and aptasensors – are described. The materials used for their development also make it possible to use them in removing heavy metals, which are toxic contaminants, from environmental water samples.

Findings

This review focuses on different technologies, tools and materials for mercury (heavy metals) detection and remediation to environmental samples.

Originality/value

This review gives up-to-date and systemic information on modern nanotechnology methods for heavy metal detection. Different recognition molecules and nanomaterials have been discussed for remediation to water samples. The present review may provide valuable information to researchers regarding novel mercury ions detection sensors and encourage them for further research/development.

Details

Sensor Review, vol. 41 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 September 1960

V.R. Gutman

The progress of solid propellent technology appears to have been retarded by lack of development of a fundamental mechanism of burning. A study of previous work indicates that…

Abstract

The progress of solid propellent technology appears to have been retarded by lack of development of a fundamental mechanism of burning. A study of previous work indicates that while experimental techniques used are valid, hypotheses were inadequate; and fresh hypothetical approaches are needed. There is evidence of lack of theory development in the more fundamental field of the combustion of turbulent, pre‐mixed, fuel‐rich flames as it applies to propellent burning. The roles of radiative heat transfer and a physical disintegrative mode of surface dissipation are proposed for consideration. Previous experimental techniques together with new ones are proposed to exploit these hypotheses.

Details

Aircraft Engineering and Aerospace Technology, vol. 32 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 December 2001

Bonawentura Kochel

A kinetic model for the biphasic modulation of phagocytosis, fulfilling the requirements of biochemistry of ligand‐binding reactions, was constructed on the basis of a…

Abstract

A kinetic model for the biphasic modulation of phagocytosis, fulfilling the requirements of biochemistry of ligand‐binding reactions, was constructed on the basis of a biocybernetic notion of the feedback loop‐containing (autocalytic) process. Using boundary conditions for parameters of possible kinetic models, a single model was selected, in which the biphasic modulatory effect exerted on a phagocytic activity of human neutrophils by the peptide preparation Immax A1 was described as a result of mutual counteraction of two antagonistic compounds (stimulator and inhibitor of phagocytosis) competing for bacterial chemotactic peptide receptors on neutrophils. This model, in which the integrated luminescence‐based normalised measure of inhibition of phagocytosis stands for the reaction rate, was found to have a form of a 2:3 rational function of the peptide preparation concentration. A corresponding stoichiometric scheme, describing the binding both of the inhibitor and of the stimulator to neutrophils, was constructed on the assumption that inhibition was not total when connected with the generation of three‐component complexes, stimulator‐neutrophil‐inhibitor.

Details

Kybernetes, vol. 30 no. 9/10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 October 2004

Bonawentura Kochel

A method for approximation of the Shannon entropy of Gaussian photon‐counting processes with infinite history was constructed on the memory function of these processes, described…

Abstract

A method for approximation of the Shannon entropy of Gaussian photon‐counting processes with infinite history was constructed on the memory function of these processes, described by autoregressive‐integrated moving average (ARIMA) models. Most frequently, photon‐counting processes are stationary or nonstationary multidimensional Gaussian discrete‐time stochastic ones which justify the use of the ARIMA models. Starting from the memory function, a memory time‐equivalent finite autoregressive representation of a given process with infinite history, i.e. a stationary finite‐order Gaussian Markov chain, was determined, then corresponding autocorrelation matrices were calculated from the truncated memory function using the Yule‐Walker equations, and an autocorrelation‐based formula for approximation of the entropy of the process through the entropy of its stationary Markovian representation was given. An ARMA(1,1) process together with its stationary (MA(1)) or nonstationary (IMA(0,1,1)) boundary cases were considered to demonstrate opposite changes in the entropy as the memory time increases at a fixed variance of the process: the entropy was found to decrease for stationary processes and increase for nonstationary ones. It was also found on experimental examples (perturbed human neutrophils and yeast cells) that those changes can be reversed by opposite changes in the process variance. The method allows us to determine, at any desired accuracy, the Shannon entropy of time‐discrete stochastic processes, and reveals new aspects of the relationship between the process' stationarity, memory, entropy and heteroskedasticity.

Details

Kybernetes, vol. 33 no. 9/10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 June 1997

E.T. Powner and F. Yalcinkaya

Discusses intelligent materials, intelligent material‐based sensors, their transducing methods, and different kinds of transducers used with smart material‐based sensors. Assumes…

2078

Abstract

Discusses intelligent materials, intelligent material‐based sensors, their transducing methods, and different kinds of transducers used with smart material‐based sensors. Assumes that the future of intelligent sensors will almost totally depend on intelligent chemistry and intelligent instrumentation. Molecular recognition will widen the horizons of smart systems with the help of VLSI‐based design and fabrication. Discusses different sensor mechanisms, such as ENFETs, immunoFETs, ISFETs and chemFETs and takes a detailed look at potentiometric, amperometric and optical biosensors.

Details

Sensor Review, vol. 17 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 29 April 2014

Onur Tuncer and Bertan Kaynaroglu

– The purpose of this paper is to assess the validity of Weller's b-ω flamelet model for practical swirl-stabilized combustion applications.

297

Abstract

Purpose

The purpose of this paper is to assess the validity of Weller's b-ω flamelet model for practical swirl-stabilized combustion applications.

Design/methodology/approach

Swirl-stabilized premixed flame behavior is investigated utilizing an atmospheric combustor test rig. Swirl number of the flow is 0.74 with a cold flow Reynolds number of 19,400 based on the hydraulic diameter at the inlet pipe. Operating condition corresponds to an equivalence ratio of 0.7 at a thermal load of 20.4 kW. Reacting flow was seeded with TiO2 particles, and velocity distribution at the center plane was measured utilizing particle image velocimetry. These results serve as a validation dataset for numerical simulations. An open-source computational fluid dynamics (CFD) code library (OpenFOAM) is used for numerical computations. These unsteady Reynolds averaged Navier Stokes (RANS) computations were performed at the same load condition corresponding to experimental data. Parallel numerical simulations were carried out on 128 processor cores. To resolve turbulence, Menter's k-ω shear stress transport model was utilized; flame behavior, on the other hand, was described by Weller's b-ω flamelet model. A block-structured all-hexahedral mesh was used.

Findings

It is observed that two counter-rotating vortices in the main recirculation zone are responsible for flame stabilization. Weak secondary recirculation zones are also present at the sides above the dump plane. Flame front location was inferred from Mie scattering images. Experimental findings show that the flame anchors both on the tip of the center body and also at the rim of the outlet pipe. Numerical simulations capture the complex interactions between the flame and the turbulent flow. These results qualitatively agree with the flame structure observed experimentally.

Practical implications

Swirl-stabilized combustion systems are used in many practical applications ranging from aeroengines to land-based power generation systems. There are implications regarding the understanding of these combustion systems.

Social implications

Better understanding of combustion systems contributes to better performing turbine engines and reduced emissions with implications for the entire society.

Originality/value

The paper provides experimental insight into the application of a combustion model for a flame configuration of practical interest.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 20 January 2012

Graham Mills and Gary Fones

This article aims to review the different devices that are available for the in situ monitoring of analytes found in the marine environment.

1946

Abstract

Purpose

This article aims to review the different devices that are available for the in situ monitoring of analytes found in the marine environment.

Design/methodology/approach

Following a short introduction to the topic, this paper discusses physical‐ and chemical‐based sensors, automatic analysers (flow injection, spectroscopic and spectrometric), electrochemical devices and biosensors.

Findings

A wide range of in situ monitoring systems (and associated deployment apparatus) for measuring concentrations of various analytes (e.g. nutrients, organic chemicals and metallic elements) have been developed in recent decades. Many of these systems are still at the laboratory or prototype stage and are yet to be fully developed into commercially available products. The harsh conditions often found in the marine environment can further limit the utility and application of these sensors. Further development work is needed; however, the need now is for field deployments, validation and inter‐calibration between sensors and other analytical measurement techniques.

Originality/value

This paper provides up‐to‐date information on in situ technologies that are available, either at the laboratory and prototype stages or commercially, and are suitable for deployment in the marine environment. Applications of these sensing systems are discussed together with their associated advantages and disadvantages over other existing water monitoring methods.

Details

Sensor Review, vol. 32 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 77