Search results

1 – 10 of 174
Article
Publication date: 4 April 2018

Bushra Rafique, Mudassir Iqbal, Tahir Mehmood and Muhammad Ashraf Shaheen

This review aims to focus on recent reported research work on the construction and function of different electrochemical DNA biosensors. It also describes different…

1421

Abstract

Purpose

This review aims to focus on recent reported research work on the construction and function of different electrochemical DNA biosensors. It also describes different sensing materials, chemistries of immobilization probes, conditions of hybridization and principles of transducing and amplification strategies.

Design/methodology/approach

The human disease-related mutated genes or DNA sequence detection at low cost can be verified by the electrochemical-based biosensor. A range of different chemistries is used by the DNA-based electrochemical biosensors, out of which the interactions of nanoscale material with recognition layer and a solid electrode surface are most interesting. A diversity of advancements has been made in the field of electrochemical detection.

Findings

Some important aspects are also highlighted in this review, which can contribute in the creation of successful biosensing devices in the future.

Originality/value

This paper provides an updated review of construction and sensing technologies in the field of biosensing.

Details

Sensor Review, vol. 39 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 January 2015

Xingya Wang and Guangchang Pang

This paper aims to provide a detailed review of weak interaction biosensors and several common biosensor methods for magnifying signals, as well as judiciously guide…

Abstract

Purpose

This paper aims to provide a detailed review of weak interaction biosensors and several common biosensor methods for magnifying signals, as well as judiciously guide readers through selecting an appropriate detecting system and signal amplification method according to their research and application purpose.

Design/methodology/approach

This paper classifies the weak interactions between biomolecules, summarizes the common signal amplification methods used in biosensor design and compares the performance of different kinds of biosensors. It highlights a potential electrochemical signal amplification method: the G protein signaling cascade amplification system.

Findings

Developed biosensors which, based on various principles, have their own strengths and weaknesses have met the basic detection requirements for weak interaction between biomolecules: the selectivity, sensitivity and detection limit of biosensors have been consistently improving with the use of new signal amplification methods. However, most of the weak interaction biosensors stop at the research stage; there are only a minority realization of final commercial application.

Originality/value

This paper evaluates the status of research and application of weak interaction biosensors systematically. The G protein signaling cascade amplification system proposal offers a new avenue for the research and development of electrochemical biosensors.

Content available
Article
Publication date: 23 June 2020

Pankaj Mandpe, Bala Prabhakar, Hunny Gupta and Pravin Shende

The present study aims to summarize different non-invasive techniques for continuous glucose monitoring (CGM) in diabetic patients using glucose-oxidase biosensors. In…

1377

Abstract

Purpose

The present study aims to summarize different non-invasive techniques for continuous glucose monitoring (CGM) in diabetic patients using glucose-oxidase biosensors. In diabetic patients, the self-monitoring of blood glucose (BG) levels through minimally invasive techniques provides a quick method of measuring their BG concentration, unlike conventional laboratory measurements. The drawbacks of minimally invasive techniques include physical pain, anxiety and reduced patient compliance. To overcome these limitations, researchers shifted their attention towards the development of a pain-free and non-invasive glucose monitoring system, which showed encouraging results.

Design/methodology/approach

This study reviews the development of minimally and non-invasive method for continuous glucose level monitoring in diabetic or hyperglycemic patients. Specifically, glucose monitoring using non-invasive techniques, such as spectroscopy-based methods, polarimetry, fluorescence, electromagnetic variations, transdermal extraction-based methods and using body fluids, has been discussed. The various strategies adopted for improving the overall specificity and performance of biosensors are discussed.

Findings

In conclusion, the technology of glucose oxidase-based biosensors for glucose level monitoring is becoming a strong competitor, probably because of high specificity and selectivity, low cost and increased patient compliance. Many industries currently working in this field include Google, Novartis and Microsoft, which demonstrates the significance and strong market potential of self-monitored glucose-oxidase-based biosensors in the near future.

Originality/value

This review paper summarizes comprehensive strategies for continuous glucose monitoring (CGM) in diabetic patients using non-invasive glucose-oxidase biosensors. Non-invasive techniques received significant research interest because of high sensitivity and better patient compliance, unlike invasive ones. Although the results from these innovative devices require frequent calibration against direct BG data, they might be a preferable candidate for future CGM. However, the challenges associated with designing accurate level sensors to biomonitor BG data easily and painlessly needs to be addressed.

Details

Sensor Review, vol. 40 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 24 October 2021

Mulayam Singh Gaur, Rajni Yadav, Mamta Kushwah and Anna Nikolaevna Berlina

This information will be useful in the selection of materials and technology for the detection and removal of mercury ions at a low cost and with high sensitivity and…

65

Abstract

Purpose

This information will be useful in the selection of materials and technology for the detection and removal of mercury ions at a low cost and with high sensitivity and selectivity. The purpose of this study is to provide the useful information for selection of materials and technology to detect and remove the mercury ions from water with high sensitivity and selectivity. The purpose of this study is to provide the useful information for selection of materials and technology to detect and remove the mercury ions from water with high sensitivity and selectivity.

Design/methodology/approach

Different nano- and bio-materials allowed for the development of a variety of biosensors – colorimetric, chemiluminescent, electrochemical, whole-cell and aptasensors – are described. The materials used for their development also make it possible to use them in removing heavy metals, which are toxic contaminants, from environmental water samples.

Findings

This review focuses on different technologies, tools and materials for mercury (heavy metals) detection and remediation to environmental samples.

Originality/value

This review gives up-to-date and systemic information on modern nanotechnology methods for heavy metal detection. Different recognition molecules and nanomaterials have been discussed for remediation to water samples. The present review may provide valuable information to researchers regarding novel mercury ions detection sensors and encourage them for further research/development.

Details

Sensor Review, vol. 41 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 February 2018

Mohamed Ghazi Al-Fandi, Nid’a Hamdan Alshraiedeh, Rami Joseph Oweis, Rawan Hassan Hayajneh, Iman Riyad Alhamdan, Rama Adel Alabed and Omar Farhan Al-Rawi

This paper aims to report a prototype of a reliable method for rapid, sensitive bacterial detection by using a low-cost zinc oxide nanorods (ZnONRs)-based electrochemical sensor.

Abstract

Purpose

This paper aims to report a prototype of a reliable method for rapid, sensitive bacterial detection by using a low-cost zinc oxide nanorods (ZnONRs)-based electrochemical sensor.

Design/methodology/approach

The ZnONRs have been grown on the surface of a disposable, miniaturized working electrode (WE) using the low-temperature hydrothermal technique. Scanning electron microscopy and energy dispersion spectroscopy have been performed to characterize the distribution as well as the chemical composition of the ZnONRs on the surface, respectively. Moreover, the cyclic voltammetry test has been implemented to assess the effect of the ZnONRs on the signal conductivity between −1 V and 1 V with a scan rate of 0.01 V/s. Likewise, the effect of using different bacterial concentrations in phosphate-buffered saline has been investigated.

Findings

The morphological characterization has shown a highly distributed ZnONR on the WE with uneven alignment. Also, the achieved response time was about 12 minutes and the lower limit of detection was approximately 103 CFU abbreviation for Colony Forming Unit/mL.

Originality/value

This paper illustrates an outcome of an experimental work on a ZnONRs-based electrochemical biosensor for direct detection of bacteria.

Details

Sensor Review, vol. 38 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 December 2017

Nur Alia Sheh Omar and Yap Wing Fen

This paper aims to review the potential application of surface plasmon resonance (SPR) in diagnosis of dengue virus (DENV-2) E-protein and the development of SPR to become…

Abstract

Purpose

This paper aims to review the potential application of surface plasmon resonance (SPR) in diagnosis of dengue virus (DENV-2) E-protein and the development of SPR to become an alternative DENV sensor.

Design/methodology/approach

In this review, the existing standard laboratory techniques to diagnosis of DENV are discussed, together with their drawbacks. To overcome these drawbacks, SPR has been aimed to be a valuable optical biosensor for identification of antibodies to the DENV antigen. The review also includes the future studies on three-dimensional poly(amidoamine) (PAMAM) dendrimer-surface-assembled monolayer (SAM)-Au multilayer thin films, which are envisaged to have high potential sensitive and selective detection ability toward target E-proteins.

Findings

Application of SPR in diagnosis of DENV emerged over recent years. A wide range of immobilized biorecognition molecules have been developed to combine with SPR as an effective sensor. The detection limit, sensitivity and selectivity of SPR sensing in DENV have been enhanced from time to time, until the present.

Originality/value

The main purpose of this review is to provide authors with up-to-date and useful information on sensing DENV using SPR and to introduce a novel three-dimensional PAMAM-SAM-Au multilayer thin films for future research on SPR sensing applications.

Details

Sensor Review, vol. 38 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 June 2015

Robert Bogue

– The purpose of this paper is to provide details of recent developments in sensors for detecting explosives and chemical warfare agents.

Abstract

Purpose

The purpose of this paper is to provide details of recent developments in sensors for detecting explosives and chemical warfare agents.

Design/methodology/approach

Following an introduction, this paper first discusses a selection of new sensing techniques aimed at detecting explosives and explosive devices. It then considers new developments in sensors for detecting chemical warfare agents. Brief concluding comments are drawn.

Findings

This paper shows that a diversity of sensor technologies is being investigated, including various advanced optical methods, nanomaterials, microelectromechanical system, electronic noses, biosensors and electrochemical techniques, several of which offer levels of sensitivity in the parts-per-trillion region. These not only have the potential to yield improved devices for detecting explosives and chemical weapons but may also play a role in health care, environmental monitoring, drug detection and industrial health and safety.

Originality/value

In an era of escalating terrorism and military conflicts, this provides a timely review of new technologies for detecting explosives and chemical warfare agents.

Details

Sensor Review, vol. 35 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 June 2016

Yijun Teh, Asral Bahari Jambek and Uda Hashim

This paper aims to discuss a nanoscale biosensor and its signal analysis algorithms.

1058

Abstract

Purpose

This paper aims to discuss a nanoscale biosensor and its signal analysis algorithms.

Design/methodology/approach

In this work, five nanoscale biosensors are reviewed, namely, silicon nanowire field-effect-transistor biosensors, polysilicon nanogap capacitive biosensors, nanotube amperometric biosensors, gold nanoparticle-based electrochemical biosensors and quantum dot-based electrochemical biosensors.

Findings

Each biosensor produces a different output signal depending on its electrical characteristics. Five signal analysers are studied, with most of the existing signal analyser analyses based on the amplitude of the signal. Based on the analysis, auto-threshold peak detection is proposed for further work.

Originality/value

Suitability of the signal processing algorithm to be applied to nano-biosensors was reported.

Details

Sensor Review, vol. 36 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 June 1997

E.T. Powner and F. Yalcinkaya

Discusses intelligent materials, intelligent material‐based sensors, their transducing methods, and different kinds of transducers used with smart material‐based sensors…

2051

Abstract

Discusses intelligent materials, intelligent material‐based sensors, their transducing methods, and different kinds of transducers used with smart material‐based sensors. Assumes that the future of intelligent sensors will almost totally depend on intelligent chemistry and intelligent instrumentation. Molecular recognition will widen the horizons of smart systems with the help of VLSI‐based design and fabrication. Discusses different sensor mechanisms, such as ENFETs, immunoFETs, ISFETs and chemFETs and takes a detailed look at potentiometric, amperometric and optical biosensors.

Details

Sensor Review, vol. 17 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 October 2017

Yanli Lu, Yao Yao, Shuang Li, Qian Zhang and Qingjun Liu

Using the remarkable olfaction ability, insects can sense trace amounts of host plant volatiles that are notorious for causing severe damage to fruits and vegetables and…

Abstract

Purpose

Using the remarkable olfaction ability, insects can sense trace amounts of host plant volatiles that are notorious for causing severe damage to fruits and vegetables and in consequence the industry. The purpose of the paper is to investigate the interactions between olfactory proteins, odorant-binding proteins (OBPs) and host plant volatiles through the developed olfactory biosensors. It might be helpful to develop novel pest control strategies.

Design/methodology/approach

Using the successfully expressed and purified OBPs of the oriental fruit fly Bactrocera dorsalis, a biosensor was developed by immobilizing the proteins on interdigitated electrodes through nitrocellulose membrane. Based on electrochemical impedance sensing, benzaldehyde emitted by the host plants, such as Beta vulgaris, was detected, which could be used to investigate and analyze the mechanisms of pests’ sense of chemical signals. The relative decreases of charge transfer resistances of the sensor were proportional to the odorant concentrations from 10−7 M to 10−3 M. Meanwhile, the interactions between OBPs and benzaldehyde were studied through the process of molecular docking.

Findings

The paper provides a pest OBPs-based biosensor that could sensitively detect the host odorants benzaldehyde. Meanwhile, the most related amino acids of OBPs that bind to host plant volatiles can be distinguished with molecular docking.

Originality/value

An olfactory biosensor was developed to explore interactions and mechanism between the pest OBPs and benzaldehyde, which showed promising potentials for small organic molecule sensing. Simultaneously, it might be helpful for novel pest control strategies.

Details

Sensor Review, vol. 37 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 174