Search results

1 – 10 of 326
Article
Publication date: 28 January 2020

Mohamed Almakki, Hiranmoy Mondal and Precious Sibanda

This paper aims to investigate entropy generation in an incompressible magneto-micropolar nanofluid flow over a nonlinear stretching sheet. The flow is subjected to thermal…

Abstract

Purpose

This paper aims to investigate entropy generation in an incompressible magneto-micropolar nanofluid flow over a nonlinear stretching sheet. The flow is subjected to thermal radiation and viscous dissipation. The energy equation is extended by considering the impact of the Joule heating term because of an imposed magnetic field.

Design/methodology/approach

The flow, heat and mass transfer model are solved numerically using the spectral quasilinearization method. An analysis of the performance of this method is given.

Findings

It is found that the method is robust, converges fast and gives good accuracy. In terms of the physically significant results, the authors show that the irreversibility caused by the thermal diffusion the dominants other sources of entropy generation and the surface contributes significantly to the total irreversibility.

Originality/value

The flow is subjected to a combination of a buoyancy force, viscous dissipation, Joule heating and thermal radiation. The flow equations are solved numerically using the spectral quasiliearization method. The impact of a range of physical and chemical parameters on entropy generation, velocity, angular velocity, temperature and concentration profiles are determined. The current results may help in industrial applicants. The present problem has not been considered elsewhere.

Details

World Journal of Engineering, vol. 17 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 July 2018

Santosh Chaudhary and Mohan Kumar Choudhary

The purpose of this paper is to investigate two-dimensional viscous incompressible magnetohydrodynamic boundary layer flow and heat transfer of an electrically conducting fluid…

Abstract

Purpose

The purpose of this paper is to investigate two-dimensional viscous incompressible magnetohydrodynamic boundary layer flow and heat transfer of an electrically conducting fluid over a continuous moving flat surface considering the viscous dissipation and Joule heating.

Design/methodology/approach

Suitable similarity variables are introduced to reduce the governing nonlinear boundary layer partial differential equations to ordinary differential equations. A numerical solution of the resulting two-point boundary value problem is carried out by using the finite element method with the help of Gauss elimination technique.

Findings

A comparison of obtained results is made with the previous work under the limiting cases. Behavior of flow and thermal fields against various governing parameters like mass transfer parameter, moving flat surface parameter, magnetic parameter, Prandtl number and Eckert number are analyzed and demonstrated graphically. Moreover, shear stress and heat flux at the moving surface for various values of the physical parameters are presented numerically in tabular form and discussed in detail.

Originality/value

The work is relatively original, as very little work has been reported on magnetohydrodynamic flow and heat transfer over a continuous moving flat surface. Viscous dissipation and Joule heating are neglected in most of the previous studies. The numerical method applied to solve governing equations is finite element method which is new and efficient.

Details

Engineering Computations, vol. 35 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 March 2013

Anwar Hossain and Rama Subba Reddy Gorla

The paper's aim is to investigate the mixed convection flow of an electrically conducting and viscous incompressible fluid past an isothermal vertical surface with Joule heating…

Abstract

Purpose

The paper's aim is to investigate the mixed convection flow of an electrically conducting and viscous incompressible fluid past an isothermal vertical surface with Joule heating in the presence of a uniform transverse magnetic field fixed relative to the surface. It was assumed that the electrical conductivity of the fluid varies linearly with the transverse velocity component.

Design/methodology/approach

The governing boundary layer equations were solved numerically. The boundary layer equations were first reduced to a convenient form by using two different formulations, namely, (i) the stream function formulation (SFF) and (ii) primitive variable formulation (PVF).

Findings

It was observed that both the local shear‐stress and Nusselt number increase with increasing value of local magnetic parameter, ξ.

Research limitations/implications

In the present investigation, we investigated the effects of Joule heating on MHD mixed convection boundary layer flow of an electrically conducting viscous incompressible fluid past an isothermal vertical flat plate in the presence of a transverse magnetic field fixed relative to the surface of the plate. The analysis was valid for a steady, two dimensional laminar flow. An extension to three dimensional flow case is left for future work.

Practical implications

Here we have analyzed the problem of mixed convection flow of electrically conducting and viscous incompressible fluid past an isothermal vertical surface with viscous and Joule heating in presence of a uniform transverse magnetic field fixed relative to the surface. The work would be useful in the thermal management of heat transfer devices.

Originality/value

The results of this study may be of interest to engineers interested in heat exchanger design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 March 2016

Gauri Shanker Seth, Rohit Sharma, Bidyasagar Kumbhakar and Ali J Chamkha

An investigation of hydromagnetic two dimensional boundary layer flow with heat transfer of a viscous, incompressible, electrically conducting, heat absorbing and optically thick…

Abstract

Purpose

An investigation of hydromagnetic two dimensional boundary layer flow with heat transfer of a viscous, incompressible, electrically conducting, heat absorbing and optically thick heat radiating fluid over a permeable exponentially stretching sheet considering the effects of viscous and Joule dissipations in the presence of velocity and thermal slip is carried out.

Design/methodology/approach

Using similarity transform, governing differential equations representing mathematical model of the problem are solved with the help of fourth-order Runge-Kutta method along with shooting technique. Numerical solutions of fluid velocity and fluid temperature are depicted graphically for various values of pertinent flow parameters whereas numerical values of wall velocity gradient and wall temperature gradient are displayed graphically for various values of pertinent flow parameters.

Findings

Numerical results obtained in this paper are compared with earlier published results and are found to be in excellent agreement. Magnetic field and suction tend to enhance the wall velocity gradient whereas dimensionless co-ordinate, injection and velocity slip factor have reverse effect on it. Suction and heat absorption tend to enhance wall temperature gradient whereas magnetic field, velocity slip factor, injection, thermal radiation, thermal slip factor and viscous dissipation have reverse effect on it.

Originality/value

The investigation of this problem may have bearing in several engineering processes such as extrusion of plastic sheet, annealing and tinning of copper wire, paper production, crystal growing and glass blowing, continuous casting of metals and spinning of fibers.

Details

Engineering Computations, vol. 33 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 24 September 2019

Himanshu Upreti and Manoj Kumar

The purpose of this paper is to examine the effect of non-linear thermal radiation, Joule heating and viscous dissipation on the mixed convection boundary layer flow of MHD…

Abstract

Purpose

The purpose of this paper is to examine the effect of non-linear thermal radiation, Joule heating and viscous dissipation on the mixed convection boundary layer flow of MHD nanofluid flow over a thin moving needle.

Design/methodology/approach

The equations directing the flow are reduced into ODEs by implementing similarity transformation. The Runge–Kutta–Fehlberg method with a shooting technique was implemented.

Findings

Numerical outcomes for the coefficient of skin friction and the rate of heat transfer are tabulated and discussed. Also, the boundary layer thicknesses for flow and temperature fields are addressed with the aid of graphs.

Originality/value

Till now, no numerical study investigated the combined influence of Joule heating, non-linear thermal radiation and viscous dissipation on the mixed convective MHD flow of silver-water nanofluid flow past a thin moving needle. The numerical results for existing work are new and their novelty verified by comparing them with the work published earlier.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 July 2005

H.M. Duwairi

To highlight the effect of viscous and Joule heating on different ionized gases in the presence of magneto and thermal radiation effects.

Abstract

Purpose

To highlight the effect of viscous and Joule heating on different ionized gases in the presence of magneto and thermal radiation effects.

Design/methodology/approach

The conservation equations are written for the MHD forced convection in the presence of thermal radiation. The governing equations are transformed into non‐similar form using a set of dimensionless variables and then solved numerically using Keller box method.

Findings

The increasing of fluid suction parameter enhances local Nusselt numbers, while the increasing of injection parameter decreases local Nusselt numbers. The inclusion of thermal radiation increases the heat transfer rate for both ionized gases suction or injection. The presence of magnetic field decreases the heat transfer rate for the suction case and increases it for the injection case. Finally, the heat transfer rate is decreased due to viscous dissipation.

Research limitations/implications

The combined effects of both viscous and Joule heating on the forced convection heat transfer of ionized gases for constant surface heat flux surfaces can be investigated.

Practical implications

A very useful source of coefficient of heat transfer values for engineers planning to transfer heat by using ionized gases.

Originality/value

The viscous and Joule heating of ionized gases on forced convection heat transfer in the presence of magneto and thermal radiation effects are investigated and can be used by different engineers working on industry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 March 2019

Vasu B.

The purpose of this study is to present the magnetohydrodynamic (MHD) flow and heat transfer in an accelerating film of a non-Newtonian pseudo-plastic nanofluid along an inclined…

Abstract

Purpose

The purpose of this study is to present the magnetohydrodynamic (MHD) flow and heat transfer in an accelerating film of a non-Newtonian pseudo-plastic nanofluid along an inclined surface with viscous dissipation and Joule heating.

Design/methodology/approach

An incompressible and inelastic fluid is assumed to obey the Ostwald-de-Waele power law model and the action of viscous stresses is confined to the developing momentum boundary layer adjacent to the solid surface. Viscous dissipation and Joule heating on the flow of electrically conducting film in the presence of uniform transverse magnetic field is considered for the Carboxyl Methyl Cellulose (CMC) water-based nanofluid. The fluid is the CMC-water-based with concentration (0.1-0.4 per cent) containing three types of nano-solid particles Cu, Al2O3 and TiO2. The modeled boundary layer conservation equations are transformed to dimensionless, coupled and highly non-linear system of differential equations, and then solved numerically by means of a local non-similarity approach with shooting technique. To validate the numerical results, a comparison of the present results is made with the earlier published results and is found to be in good agreement.

Findings

The effects of magnetic parameter, Prandtl number, Eckert number and Biot numbers on the velocity and temperature fields are presented graphically and discussed for various values of thermo-physical parameters. It has been found that magnetic field decelerates the fluid velocity for both cases of Newtonian nanofluid and pseudo-plastic nanofluid because of the generated drag-like Lorentz force. This is of great benefit in magnetic materials processing operations, utilizing static transverse uniform magnetic field, as it allows a strong regulation of the flow field.

Research limitations/implications

The numerical study is valid for two-dimensional, steady, laminar film flow of Ostwald-de-Waele power law non-Newtonian nanofluid along an inclined plate. A uniform transverse magnetic field of strength B0 is applied perpendicular to the wall. Assume that the base fluid and the nano-solid particles are in thermal equilibrium with no slip effects. The interaction of magnetic field with nanofluid has several potential implications and may be used to deal with the problems such as cooling nuclear reactors by liquid sodium and inducting the flow meter which depends on the potential difference in the fluid along the direction perpendicular to the motion and to the magnetic field.

Practical implications

The study has significant applications in magnetic field control of materials processing systems.

Originality/value

The results of the present study may be attentiveness to the engineers and applied mathematicians who are interested in hydrodynamics and heat transfer enhancement associated with film flows.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 September 2023

Thameem Hayath Basha, Sivaraj Ramachandran and Bongsoo Jang

The need for precise synthesis of customized designs has resulted in the development of advanced coating processes for modern nanomaterials. Achieving accuracy in these processes…

Abstract

Purpose

The need for precise synthesis of customized designs has resulted in the development of advanced coating processes for modern nanomaterials. Achieving accuracy in these processes requires a deep understanding of thermophysical behavior, rheology and complex chemical reactions. The manufacturing flow processes for these coatings are intricate and involve heat and mass transfer phenomena. Magnetic nanoparticles are being used to create intelligent coatings that can be externally manipulated, making them highly desirable. In this study, a Keller box calculation is used to investigate the flow of a coating nanofluid containing a viscoelastic polymer over a circular cylinder.

Design/methodology/approach

The rheology of the coating polymer nanofluid is described using the viscoelastic model, while the effects of nanoscale are accounted for by using Buongiorno’s two-component model. The nonlinear PDEs are transformed into dimensionless PDEs via a nonsimilar transformation. The dimensionless PDEs are then solved using the Keller box method.

Findings

The transport phenomena are analyzed through a comprehensive parametric study that investigates the effects of various emerging parameters, including thermal radiation, Biot number, Eckert number, Brownian motion, magnetic field and thermophoresis. The results of the numerical analysis, such as the physical variables and flow field, are presented graphically. The momentum boundary layer thickness of the viscoelastic polymer nanofluid decreases as fluid parameter increases. An increase in mixed convection parameter leads to a rise in the Nusselt number. The enhancement of the Brinkman number and Biot number results in an increase in the total entropy generation of the viscoelastic polymer nanofluid.

Practical implications

Intelligent materials rely heavily on the critical characteristic of viscoelasticity, which displays both viscous and elastic effects. Viscoelastic models provide a comprehensive framework for capturing a range of polymeric characteristics, such as stress relaxation, retardation, stretching and molecular reorientation. Consequently, they are a valuable tool in smart coating technologies, as well as in various applications like supercapacitor electrodes, solar collector receivers and power generation. This study has practical applications in the field of coating engineering components that use smart magnetic nanofluids. The results of this research can be used to analyze the dimensions of velocity profiles, heat and mass transfer, which are important factors in coating engineering. The study is a valuable contribution to the literature because it takes into account Joule heating, nonlinear convection and viscous dissipation effects, which have a significant impact on the thermofluid transport characteristics of the coating.

Originality/value

The momentum boundary layer thickness of the viscoelastic polymer nanofluid decreases as the fluid parameter increases. An increase in the mixed convection parameter leads to a rise in the Nusselt number. The enhancement of the Brinkman number and Biot number results in an increase in the total entropy generation of the viscoelastic polymer nanofluid. Increasing the strength of the magnetic field promotes an increase in the density of the streamlines. An increase in the mixed convection parameter results in a decrease in the isotherms and isoconcentration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 January 2019

Shashikumar N.S., B.J. Gireesha, B. Mahanthesh, Prasannakumara B.C. and Ali J. Chamkha

Outstanding features such as superior electrical conductivity and thermal conductivity of alloy nanoparticles with working fluids make them ideal materials to be used as coolants…

Abstract

Purpose

Outstanding features such as superior electrical conductivity and thermal conductivity of alloy nanoparticles with working fluids make them ideal materials to be used as coolants in microelectromechanical systems (MEMSs). This paper aims to investigate the effects of different alloy nanoparticles such as AA7075 and Ti6Al4V on microchannel flow of magneto-nanoliquids with partial slip and convective boundary conditions. Flow features are explored with the effects of magnetism and nanoparticle shape. Heat transport of fluid includes radiative heat, internal heat source/sink, viscous and Joule heating phenomena.

Design/methodology/approach

Suitable dimensionless variables are used to reduce dimensional governing equations into dimensionless ordinary differential equations. The relevant dimensionless ordinary differential systems are computed numerically by using Runge–Kutta–Fehlberg-based shooting approach. Pertinent results of velocity, temperature, entropy number and Bejan number for assorted values of physical parameters are comprehensively discussed. Also, a closed-form solution is obtained for momentum equation for a particular case. Analytical results agree perfectly with numerical results.

Findings

It is established that the entropy production can be improved with radiative heat, Joule heating, convective heating and viscous dissipation aspects. The entropy production is higher in the case of Ti6Al4V-H2O nanofluid than AA7075-H2O. Further, the inequality Ns(ξ)Sphere > Ns(ξ)Hexahedran > Ns(ξ)Tetrahydran > Ns(ξ)Column > Ns(ξ)Lamina holds true.

Originality/value

Effects of aluminium and titanium alloy nanoparticles in microchannel flows by using viscous dissipation and Joule heating are investigated for the first time. Flow features are explored with the effects of magnetism and nanoparticle shape. The results for different alloy nanoparticles such as AA7075 and Ti6Al4V have been compared.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 January 2020

A. Roja and B.J. Gireesha

Microfluidics is one of the extensive elaborated technologies in thermal and engineering fields due to its wide range of applications, such as micro heat exchangers, micro mixture…

Abstract

Purpose

Microfluidics is one of the extensive elaborated technologies in thermal and engineering fields due to its wide range of applications, such as micro heat exchangers, micro mixture and microchannel heat sinks, which is used to develop a large number of microscopic devices and systems. Enhancement of thermal energy using verity of nanoliquids is one of the challenges in these applications of microfluidics. Therefore, using single wall carbon nanotubes for enhancement of thermal energy in microchannel is the main purpose of this study. Hall effect of natural convection flow in a vertical channel with slip and temperature jump condition is considered. The impacts of radiative heat flux, uniform heat source/sink, viscous dissipation and joule heating are also taken into account.

Design/methodology/approach

Suitable non-dimension variables are applied to the governing equations to reduce the system into ordinary differential equations. The reduced nonlinear system is then solved numerically using Runge–Kutta–Fehlberg fourth–fifth-order method along with shooting technique. The impact of different pertinent parameters on numerical solutions of primary velocity, secondary velocity, temperature, entropy generation and Bejan number is comprehensively discussed in detail. Also, the obtained numerical results are compared with existing one which perfectly found to be in good agreement.

Findings

It is established that, with the aspects of Joule heating, viscous dissipation, radiative heat flux and uniform heat source/sink, the production in the entropy can be improved. Further, it is found that the increasing ratio of wall ambient temperature difference and nanoparticle volume fraction leads to enhance the entropy generation. The same effect reverses with increasing values of fluid wall interaction parameter (FWIP) and rare faction. The irreversibility ratio enhances with larger values of nanoparticle volume fraction and decelerates with increment values of FWIP.

Originality/value

The impact of single wall carbon nanoliquid in a vertical channel flow by using radiative heat flux, heat source/sink, joule heating and viscous dissipation is first time investigated. Further, the influence of Hall current is explored in detail.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 326