Search results

1 – 10 of 58
Article
Publication date: 20 March 2019

Vasu B.

The purpose of this study is to present the magnetohydrodynamic (MHD) flow and heat transfer in an accelerating film of a non-Newtonian pseudo-plastic nanofluid along an inclined…

Abstract

Purpose

The purpose of this study is to present the magnetohydrodynamic (MHD) flow and heat transfer in an accelerating film of a non-Newtonian pseudo-plastic nanofluid along an inclined surface with viscous dissipation and Joule heating.

Design/methodology/approach

An incompressible and inelastic fluid is assumed to obey the Ostwald-de-Waele power law model and the action of viscous stresses is confined to the developing momentum boundary layer adjacent to the solid surface. Viscous dissipation and Joule heating on the flow of electrically conducting film in the presence of uniform transverse magnetic field is considered for the Carboxyl Methyl Cellulose (CMC) water-based nanofluid. The fluid is the CMC-water-based with concentration (0.1-0.4 per cent) containing three types of nano-solid particles Cu, Al2O3 and TiO2. The modeled boundary layer conservation equations are transformed to dimensionless, coupled and highly non-linear system of differential equations, and then solved numerically by means of a local non-similarity approach with shooting technique. To validate the numerical results, a comparison of the present results is made with the earlier published results and is found to be in good agreement.

Findings

The effects of magnetic parameter, Prandtl number, Eckert number and Biot numbers on the velocity and temperature fields are presented graphically and discussed for various values of thermo-physical parameters. It has been found that magnetic field decelerates the fluid velocity for both cases of Newtonian nanofluid and pseudo-plastic nanofluid because of the generated drag-like Lorentz force. This is of great benefit in magnetic materials processing operations, utilizing static transverse uniform magnetic field, as it allows a strong regulation of the flow field.

Research limitations/implications

The numerical study is valid for two-dimensional, steady, laminar film flow of Ostwald-de-Waele power law non-Newtonian nanofluid along an inclined plate. A uniform transverse magnetic field of strength B0 is applied perpendicular to the wall. Assume that the base fluid and the nano-solid particles are in thermal equilibrium with no slip effects. The interaction of magnetic field with nanofluid has several potential implications and may be used to deal with the problems such as cooling nuclear reactors by liquid sodium and inducting the flow meter which depends on the potential difference in the fluid along the direction perpendicular to the motion and to the magnetic field.

Practical implications

The study has significant applications in magnetic field control of materials processing systems.

Originality/value

The results of the present study may be attentiveness to the engineers and applied mathematicians who are interested in hydrodynamics and heat transfer enhancement associated with film flows.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 June 2020

Asgar Ali, R.N. Jana and S. Das

This paper aims to assess the effectiveness of Hall currents and power-law slip condition on the hydromagnetic convective flow of an electrically conducting power-law fluid over…

Abstract

Purpose

This paper aims to assess the effectiveness of Hall currents and power-law slip condition on the hydromagnetic convective flow of an electrically conducting power-law fluid over an exponentially stretching sheet under the effect of a strong variable magnetic field and thermal radiation. Flow formation is developed using the rheological expression of a power-law fluid.

Design/methodology/approach

The nonlinear partial differential equations describing the flow are transformed into the nonlinear ordinary differential equations by employing the local similarity transformations and then solved numerically by an effective numerical approach, namely, fourth-order Runge–Kutta integration scheme, along with the shooting iteration technique. The numerical solution is computed for different parameters by using the computational software MATLAB bvp4c. The bvp4c function uses the finite difference code as the default. This method is a fourth-order collocation method. The impacts of thermophysical parameters on velocity and temperature distributions, skin friction coefficients and Nusselt number in the boundary layer regime are exhibited through graphs and tables and deliberated with proper physical justification.

Findings

Our investigation conveys that Hall current has an enhancing behavior on velocity profiles and reduces skin friction coefficients. An increase in the power-law index is observed to deplete velocity and temperature evolution. The temperature for the pseudo-plastic (shear-thinning) fluid is relatively higher than the corresponding temperature of the dilatant (shear-thickening) fluid. The streamlines are more distorted and have low intensity near the surface of the sheet for the dilatant fluid than the pseudo-plastic fluid.

Social implications

The study is pertinent to the expulsion of polymer sheet and photographic films, hydrometallurgical industry, electrically conducting polymer dynamics, magnetic material processing, solutions and melts of polymer processing, purification of molten metals from nonmetallic. The results obtained in this work can be relevant in fluid mechanics and heat transfer applications.

Originality/value

The present problem has, to the authors' knowledge, not communicated thus far in the scientific literature. A comparative study with the published works is conducted to verify the accuracy of the present study. The results obtained in this analysis are significant in providing the standards for validating the accuracies of some numerical or empirical methods.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 June 2019

Meng Yang and Yanhai Lin

The purpose of this paper is to investigate the flow and heat transfer of power-law fluids over a non-linearly stretching sheet with non-Newtonian power-law stretching features.

Abstract

Purpose

The purpose of this paper is to investigate the flow and heat transfer of power-law fluids over a non-linearly stretching sheet with non-Newtonian power-law stretching features.

Design/methodology/approach

The governing non-linear partial differential equations are reduced to a series of ordinary differential equations by suitable similarity transformations and the numerical solutions are obtained by the shooting method.

Findings

As the temperature power-law index or the power-law number of the fluids increases, the dimensionless stream function, dimensionless velocity and dimensionless temperature decrease, while the velocity boundary layer and temperature boundary layer become thinner for other fixed physical parameters. The thermal diffusivity varying as a function of the temperature gradient can be used to present the characteristics of flow and heat transfer of non-Newtonian power-law fluids.

Originality/value

Unlike classical works, the effect of power-law viscosity on the temperature field is considered by assuming that the temperature field is similar to the velocity field with modified Fourier’s law heat conduction for power-law fluid media.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 September 2016

Macha Madhu, Naikoti Kishan and A. Chamkha

The purpose of this paper is to study the boundary layer flow and heat transfer of a power-law non-Newtonian nanofluid over a non-linearly stretching sheet.

Abstract

Purpose

The purpose of this paper is to study the boundary layer flow and heat transfer of a power-law non-Newtonian nanofluid over a non-linearly stretching sheet.

Design/methodology/approach

The governing equations describing the problem are transformed into a nonlinear ordinary differential equations by suitable similarity transformations. The resulting equations for this investigation are solved numerically by using the variational finite element method.

Findings

It was found that the local Nusselt number increases by increasing the Prandtl number, stretching sheet parameter and decreases by increasing the power-law index, thermophoresis parameter and Lewis number. Increases in the stretching sheet parameter, Prandtl number and thermophoresis parameter decrease the local Sherwood number values. The effects of Brownian motion and Lewis number lead to increases in the local Sherwood number values.

Originality/value

The work is relatively original as very little work has been reported on non-Newtonian nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 March 2014

Ali Mohamadi Sani, Ghazaleh Hedayati and Akram Arianfar

The aim of this study was to measure the apparent viscosity, flow behavior and density of melon juice as a function of temperature and juice concentration and to obtain simple…

Abstract

Purpose

The aim of this study was to measure the apparent viscosity, flow behavior and density of melon juice as a function of temperature and juice concentration and to obtain simple equations to correlate experimental data.

Design/methodology/approach

Melon juice was concentrated in a rotary evaporator to 40±1, 52.5±1 and 65±1°Brix at 50°C, 80 rpm and stored at 4°C until analysis. Density of melon juice was determined with 25 ml pycnometer at 15, 25 and 35°C and was expressed as kg/m3. All experiments were conducted in triplicate. Experimental data were fitted to different models (linear, quadratic, exponential, quadratic exponential and polynomial) using Minitab 16. Significant differences in the mean values were reported at p<0.05. The flow behavior of melon juice was determined using a concentric cylinder rotational viscometer at shear rate range of 13.2-330 s−1 and temperatures of 15, 25 and 35°C. The experimental data were analyzed Slide Write V7.01 Trial Size (p<0.05) and the rheograms was plotted by Microsoft Excel 2007.

Findings

Results showed that the four-term polynomial model is the best model for computing density values from temperature and concentration (R2=0.999). The measured shear stress was within 1.69-780 Pa, corresponding to viscosity range of 0.016-0.237 Pa · s. Within the tested conditions, the concentrate exhibited a pseudo plastic behavior. Temperature had an inverse effect on shear stress and apparent viscosity.

Originality/value

No research had been done on production of melon juice concentrate.

Details

Nutrition & Food Science, vol. 44 no. 2
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 1 October 2006

M. Lamsaadi, M. Naïmi and M. Hasnaoui

The aim of this work is to study numerically and analytically flow and heat transfer characteristics and multiplicity of steady states for natural convection in a horizontal…

Abstract

Purpose

The aim of this work is to study numerically and analytically flow and heat transfer characteristics and multiplicity of steady states for natural convection in a horizontal rectangular cavity, filled with non‐Newtonian power‐law fluids and heated from all sides.

Design/methodology/approach

The governing equations are discretised by using the well known second‐order central finite difference method and integrated by combining the ADI and PSOR techniques. The analytical approach is based on the parallel flow assumption.

Findings

Natural and anti‐natural flows existence is proved when the Rayleigh number exceeds a critical value and the side lateral heating intensity values is chosen inside a specific range. The analytical results are found to agree well with those obtained numerically. The fluid flow and the heat transfer are found to be rather sensitive to the non‐Newtonian power‐law behaviour.

Research limitations/implications

The obtained results are limited to non‐Newtonian power‐law fluids and cannot be extended to fluids having other behaviours.

Practical implications

The problem is implied in some industrial thermal processes.

Originality/value

Existence of multiple steady state‐solutions in the range of the side lateral heating intensity values ensuring, that is reduced by the shear‐thickening behaviour and extended by the shear‐thinning one for a given value of Rayleigh number.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 16 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 August 2020

Renata D. Paz, Andrea C. Landázuri and María Gabriela Vernaza

The purpose of this paper was to promote the use of residual moringa seed powder (RMSP) for the enhancement of cereal-based products. RMSP is usually discarded after seed-oil…

Abstract

Purpose

The purpose of this paper was to promote the use of residual moringa seed powder (RMSP) for the enhancement of cereal-based products. RMSP is usually discarded after seed-oil extraction. This work also promotes zero-waste and rheological approaches.

Design/methodology/approach

In search of novel and sustainable food products with high nutritional value, cold-pressed Moringa oleifera Lam. seeds residue (RMSP) was used for incorporation in muffin formulations. Wheat flour was partially substituted (0%, 1%, 3%, 5%, 7% and 9%) by RMSP. Sodium (Na), calcium (Ca) and iron (Fe) contents were quantified through atomic absorption spectrometry; protein, through the Kjeldahl method followed by AACC Method 46–13.01; and, fat content, by a modified version of AACC Method 30–25.01a. Analysis of variance (ANOVA) and Tukey tests were performed to determine significant differences between formulations at 95% reliability using Minitab® software. Furthermore, simple viscosity studies of the dough mixture were carried in a Brookfield DV-III Ultra Rheometer; Matlab® curve-fitting tool was used for obtaining the best non-Newtonian equation that modeled experimental data. Subsequently, computational fluid dynamics (CFD) simulations of non-Newtonian fluids along a segmented pipe were carried out in Comsol Multiphysics® software to depict the importance of modeling non-Newtoning fluids for downstream processes.

Findings

RMSP significantly (p < 0.0001) increased protein and Fe content for the 7% and 9% formulations; it dramatically changed Na and Ca content in all formulations, while fat remained constant.

Social implications

The development of this type of product is an opportunity for communities that grow and harvest moringa as well as for food industries which can take advantage of moringa by-products for several subsequent processing.

Originality/value

For the first time, it was found that dough formulations with RMSP presented a pseudo-plastic and thixotropic behavior. In addition, the use of lignocellulosic by-products such as RMSP incorporates an added value to food products. In this case, it was demonstrated that moringa seed residue enhanced nutritional value to muffins and provided coagulant/flocculant action, which is essential during dough preparation.

Details

Nutrition & Food Science , vol. 51 no. 3
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 6 May 2021

Bo Xie and Yuan-Ming Wang

This paper aims to discuss the stagnation-point flow and heat transfer for power-law fluid pass through a stretching surface with heat generation effect. Unlike the previous…

Abstract

Purpose

This paper aims to discuss the stagnation-point flow and heat transfer for power-law fluid pass through a stretching surface with heat generation effect. Unlike the previous considerations about the research on stagnation-point flow, the process of heat transfer and the convective heat transfer boundary condition use the modified Fourier’s law in which the heat flux is power-law-dependent on velocity gradient.

Design/methodology/approach

The similarly transformation is used to convert the governing partial differential equations into a series of ordinary differential equations which are solved analytically by using the differential transform method and the base function method.

Findings

The variations of the velocity and temperature fields for different specific related parameters are graphically discussed and analyzed. There is a special phenomenon that all the velocity profiles converge from the initial value of velocity to stagnation parameter values. And the larger power-law index enhancesthe momentum diffusion. A significant phenomenon can be observed that the larger power-law index causes a decline in the heat flux. This influence indicates that the higher viscosity restricts the heat transfer. Furthermore, both velocity gradient and temperature gradient play an indispensable role in the processes of heat transfer.

Originality/value

This paper researches the process of heat transfer of stagnation-point flow ofpower-law magneto-hydro-dynamical fluid over a stretching surface with modified convective heat transfer boundary condition.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 March 2020

Muhammad Sohail and Rabeeah Raza

The current determination is committed to characterize the boundary layer flow of Williamson nanofluid prompted by nonlinear strained superficial under heat and mass transport…

Abstract

Purpose

The current determination is committed to characterize the boundary layer flow of Williamson nanofluid prompted by nonlinear strained superficial under heat and mass transport mechanisms. Buongiorno model is presented to view the influence of nanoparticles in fluid flow. Scrutiny has been conceded under the action of the transversely smeared magnetic field. Heat and mass relocation exploration are conducted in the companionship of radiation effects and actinic compensation.

Design/methodology/approach

Similarity variable is designated to transmute nonlinear partial differential equations of conservation laws of mass, momentum, energy and species into ordinary dimensional expressions. These constitutive and complicated ordinary differential expressions assessing the flow situation are handled efficaciously by manipulating Runge–Kutta–Fehlberg procedure (RK-5) with shooting routine.

Findings

The graphical demonstration is deliberated to scrutinize the variation in velocity, temperature and concentration profiles with respect to flow regulating parameters. Numerical data are displayed through tables in order to surmise variation in skin friction coefficient and Nusselt number. The augmenting values of fluid parameter and magnetic parameter reduces the horizontal fluid velocity, whereas normal velocity upsurges for mounting values of stretching ratio parameter. Moreover, mounting values of radiation parameter and thermophoresis parameter upsurges the temperature profile, whereas, growing values of Prandtl number lessen the temperature field.

Practical implications

The current exploration is used in many industrial and engineering applications in order to discuss the transport phenomenon.

Originality/value

Flow over a nonlinear stretched surface has numerous applications in the industry. The present attempt examines the combined influence of various physical characteristics for the flow of Williamson fluid and no such attempt exist in the available literature.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 July 2016

Madhu Macha, Kishan Naikoti and Ali J Chamkha

The purpose of this paper is to analyze the mangnetohydrodynamic boundary layer flow of a viscous, incompressible and electrically conducting non-Newtonian nanofluid obeying…

Abstract

Purpose

The purpose of this paper is to analyze the mangnetohydrodynamic boundary layer flow of a viscous, incompressible and electrically conducting non-Newtonian nanofluid obeying power-law model over a non-linear stretching sheet under the influence of thermal radiation with heat source/sink.

Design/methodology/approach

The transverse magnetic field is applied normal to the sheet. The model used for the nanofluid incorporates the effects of Brownian motion with thermophoresis in the presence of thermal radiation. On this regard, thermophoresis effect on convective heat transfer on nanofluids are investigated simultaneously. The governing partial differential equations are reduced to ordinary differential equations by suitable similarity transformations which are solved numerically by variational finite element method.

Findings

The computations carried out for some values of the power-law index, magnetic parameter, radiation parameter, Brownian motion and thermophoresis. The effect of these parameters on the velocity, temperature and nanoparticle volume fraction distribution are presented graphically. The skin friction coefficient, Nusselt number and Sherwood number for various values of the flow parameters of the problem are also presented.

Originality/value

To the best of the authors’ knowledge, no investigations has been reported regarding the study of non-Newtonian nanofluids which obeying power-law model over a nonlinear stretching sheet. The principal aim of this paper is to study the boundary layer MHD flow of a non-Newtonian power-law model over a non-linear stretching sheet on a quotient viscous incompressible electrically conducting with a nanofluid.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 58