Search results

1 – 10 of 538
Article
Publication date: 16 January 2020

Mokhtar Ferhi and Ridha Djebali

This paper aims to perform the lattice Boltzmann simulation of conjugate natural convection heat transfer, heat flow visualization via heatlines approach and entropy generation in…

Abstract

Purpose

This paper aims to perform the lattice Boltzmann simulation of conjugate natural convection heat transfer, heat flow visualization via heatlines approach and entropy generation in a partitioned medium filled with Ag-MgO (15-85%)/water.

Design/methodology/approach

The lattice Boltzmann method (LBM) is used to predict the dynamic and thermal behaviors. Experimental correlations for dynamic viscosity and thermal conductivity versus solid volume fraction are used. The study is conducted for the ranges of Rayleigh number 103 ≤ Ra ≤ 106, the partitioner thickness 0.01 ≤ δ ≤ 0.9, its position 0.15 ≤ Xs ≤ 0.85 and the hybrid nano-suspensions volume fraction 0% ≤ ϕ ≤ 2%.

Findings

The effects of varying of controlling parameters on the convective flow patterns, temperature contours, heat transfers, the heatlines and the entropy generation are presented. It has been found that the maximum rate of heat transfer enhancement occurs for low Ra numbers (103) and is close to 13.52%. The solid thickness d and its horizontal position Xs have a substantial influence on the heat transfer rate, flow structure, heatline, total entropy generation and Bejan number. Besides, the maximum heat transfer is detected for high Ra and δ ≈ 1 and the percentage of augmentation is equal to 65.55% for ϕ = 2%. According to the horizontal position, the heat transfer remains invariant for Ra = 103 and takes a maximum value near the active walls for Ra ≥ 104. The total entropy generation increases with Ra and decreases with ϕ for Ra = 106. The increase of ϕ from 0 to 2% leads to a reduction in close to 40.76%. For this value of Ra, the entropy is the maximum for δ = 0.4 and Xs = 0.35 and Xs = 0.65%. Moreover, as the Ra increases the Bejan number undergoes a decrease. The Bejan number is the maximum for Ra = 103 independently to δ and Xs. The superior thermal performance manifests at low Ra and high value of δ independently to the positions of the conducting body.

Originality/value

The originality of this paper is to analyze the hybrid nano-additive effects on the two-dimensional conjugate natural convection in a partitioned medium using the LBM. The experimental correlations used for the effective thermal conductivity and dynamic viscosity give credibility to our study. Different approaches such as heatlines and entropy generation are used.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 May 2021

S. Das, S. Chakraborty and R. N. Jana

This study aims to expose the flow phenomena and entropy generation during a; magnetohydrodynamic (MHD) Poiseuille flow of water-based nanofluids (NFs) in a porous channel subject…

Abstract

Purpose

This study aims to expose the flow phenomena and entropy generation during a; magnetohydrodynamic (MHD) Poiseuille flow of water-based nanofluids (NFs) in a porous channel subject to hydrodynamic slip and convective heating boundary conditions. The flow caused by the uniform pressure; gradient between infinite parallel plates is considered steady and fully developed. The nanoparticles; namely, copper, alumina and titanium oxide are taken with pure water as the base fluid. Viscous dissipation and Joule heating impacts are also incorporated in this investigation.

Design/methodology/approach

The reduced governing equations are solved analytically in closed form. The physical insights of noteworthy parameters on the important flow quantities are demonstrated through graphs and analyzed elaborately. The thermodynamic analysis is performed by calculating entropy generation; rate and Bejan number. A graphical comparison between solutions corresponding to NFs and regular fluid in the channel is also provided.

Findings

The analysis of the results divulges that entropy generation minimization can be achieved by an appropriate combination of the geometrical and physical parameters of thermomechanical systems. It is reported that ascent in magnetic parameter number declines the velocity profiles, while the inverse pattern is witnessed with augmentation in hydrodynamic slip parameters. The temperature dissemination declines with the growth of Biot numbers. It is perceived that the entropy generation rate lessens with an upgrade in magnetic parameter, whereas the reverse trend of Bejan number is perceived with expansion in magnetic parameter and Biot number. The important contribution of the result is that the entropy generation rate is controlled with an appropriate composition of thermo-physical parameter values. Moreover, in the presence of a magnetic field and suction/injection at the channel walls, the shear stresses at the channel walls are reduced about two times.

Practical implications

In various industrial applications, minimizing entropy generation plays a significant role. Miniaturization of entropy is the utilization of the energy of thermal devices such as micro heat exchangers, micromixers, micropumps and cooling microelectromechanical devices.

Originality/value

An attentive review of the literature discloses that quite a few studies have been conducted on entropy generation analysis of a fully developed MHD Poiseuille flow of NFs through a permeable channel subject to the velocity slip and convective heating conditions at the walls.

Details

World Journal of Engineering, vol. 18 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 May 2016

J. Srinivas, J.V. Ramana Murthy and Ali J Chamkha

– The purpose of this paper is to examine the flow, heat transfer and entropy generation characteristics for an inclined channel of two immiscible micropolar fluids.

Abstract

Purpose

The purpose of this paper is to examine the flow, heat transfer and entropy generation characteristics for an inclined channel of two immiscible micropolar fluids.

Design/methodology/approach

The flow region consists of two zones, the flow of the heavier fluid taking place in the lower zone. The flow is assumed to be governed by Eringen’s micropolar fluid flow equation. The resulting governing equations are then solved using the homotopy analysis method.

Findings

The following findings are concluded: first, the entropy generation rate is more near the plates in both the zones as compared to that of the interface. This indicates that the friction due to surface on the fluids increases entropy generation rate. Second, the entropy generation rate is more near the plate in Zone I than that of Zone II. This may be due to the fact that the fluid in Zone I is more viscous. This indicates the more the viscosity of the fluid is, the more the entropy generation. Third, Bejan number is the maximum at the interface of the fluids. This indicates that the amount of exergy (available energy) is maximum and irreversibility is minimized at the interface between the fluids. Fourth, as micropolarity increases, entropy generation rate near the plates decreases and irreversibility decreases. This indicates an important industrial application for micropolar fluids to use them as a good lubricant.

Originality/value

The problem is original as no work has been reported on entropy generation in an inclined channel with two immiscible micropolar fluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 December 2023

Hamza Berrehal, Roshanak Karami, Saeed Dinarvand, Ioan Pop and Ali Chamkha

This paper aims to study numerically the flow, heat transfer, and entropy generation of aqueous copper oxide-silver hybrid nanofluid over a down-pointing rotating vertical cone…

Abstract

Purpose

This paper aims to study numerically the flow, heat transfer, and entropy generation of aqueous copper oxide-silver hybrid nanofluid over a down-pointing rotating vertical cone, with linear surface temperature (LST) and linear surface heat flux (LSHF), in the presence of a cross-magnetic field. In industrial applications, such as oil and gas plants, food industries, steel factories and nuclear packages, the real bodies may contain nonorthogonal walls and variable cross-section three-dimensional forms which this issue can clarify the importance of selective geometry in the present research.

Design/methodology/approach

The mass-based scheme is accomplished for the simulation, and the entropy generation and Bejan number will be analyzed in conjunction with the aforementioned model. It has been hypothesized that two types of boundary conditions (LST and LSHF) as well as five nanoparticle shapes (sphere, brick, cylinder, platelet and disk) present a collection of crucial results. The overseeing PDEs are changed over completely to the dimensionless ODEs, and these are solved by Runge–Kutta–Fehlberg approach combined with a shooting methodology for certain values of physical parameters.

Findings

Subsequent to the fantastic compromise of the computational outcomes with past reports, the outcomes are introduced to conduct the investigation of the hydrodynamics/thermal boundary layers, the skin friction and the Nusselt number, as well as entropy generation and Bejan number. A state of hybrid nanofluid, which exhibits a remarkable increase in heat transfer in comparison to the states of mono-nanofluid and regular fluid, has been found to have the highest Nusselt number; however, the skin friction values should always be taken into account and managed. The entropy generation improves with the mass of the second nanoparticle (silver), while the opposite pattern is exhibited for the Bejan number. Furthermore, the lowest value of entropy generation number belongs to the cylindrical shape of nanoparticles in the LST case. In final, a significant accomplishment of the current study is the accurate output of the mass-based scheme for an entropy analysis problem.

Originality/value

To the best of the authors’ knowledge, for the first time, in this study, a new development of natural convective flow of a hybrid nanofluid about the warmed (LST and LSHF) and down-pointing rotating vertical cone by the mass-based algorithm has been presented. The applied methodology considers the masses of base fluid (water) and nanoparticles (Ag and CuO) as an alternative to the first and second nanoparticles volume fraction. Indeed, the combination use of the Tiwari–Das nanofluid model and the mass-based hybridity algorithm for the entropy generation analysis can be the main novelty of this work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 December 2020

S. Das, S. Sarkar and R.N. Jana

To amend the efficiency of engineering processes and electronic devices, it is very urgent to assess the irreversibility in the term entropy generation (EG). The efficiency of…

Abstract

Purpose

To amend the efficiency of engineering processes and electronic devices, it is very urgent to assess the irreversibility in the term entropy generation (EG). The efficiency of energy transportation in a system can be improved by minimization of the rate of EG. In this context, the aim of the present study is to estimate irreversible losses of an unsteady magnetohydrodynamic (MHD) flow of a viscous incompressible electrically conducting non-Newtonian molybdenum disulfide-polyethylene glycol Casson nanofluid past a moving vertical plate with slip condition under the influence of Hall current, thermal radiation, internal heat generation/absorption and first-order chemical reaction. Molybdenum disulfide (MoS2) nanoparticles are dispersed in the base fluid polyethylene glycol (PEG) to make Casson nanofluid. Casson fluid model is considered to characterize the rheology of the non-Newtonian fluid, whereas Rosseland approximation is adopted to simulate the thermal radiative heat flux in the energy equation.

Design/methodology/approach

The closed-form solutions are obtained for the model equations by using the Laplace transform method (LTM). Graphs and tables are prepared to examine the impact of pertinent flow parameters on the pertinent flow characteristics. The energy efficiency of the system via the Bejan number is studied extensively.

Findings

Analysis reveals that Hall current has diminishing behavior on entropy production of the thermal system. Strengthening of the magnetic field declines the velocity components and prop-ups the rate of EG. Adding nanoparticles into the base fluid reduces the EG, whereas there are an optimum volume fraction of nanoparticles for which the EG is minimized. Further, the rate of decay of EG is prominent in molybdenum disulfide-polyethylene glycol in comparison to PEG.

Practical implications

The results of this study would benefit the industrial sector in achieving the maximum heat transfer at the cost of minimum irreversibilities with an optimal choice of embedded thermophysical parameters. In view of this agenda, this study would be adjuvant in powder technology, polymer dynamics, metallurgical process, manufacturing dynamics of nano-polymers, petroleum industries, chemical industries, magnetic field control of material processing, synthesis of smart polymers, etc.

Originality/value

The novelty of this study is to encompass the analytical solution by using the LTM. Such an exact solution of non-Newtonian fluid flow is rare in the literature. Limited research articles are available in the field of EG analysis during the flow of non-Newtonian nanoliquid subject to a strong magnetic field.

Article
Publication date: 16 February 2024

Muhammad Faisal, F. Mabood, I.A. Badruddin, Muhammad Aiyaz and Faisal Mehmood Butt

Nonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering…

15

Abstract

Purpose

Nonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering surface. The impression of activation energy is incorporated in the modeling with the significance of nonlinear radiation, dissipative-function, heat generation/consumption connection and Joule heating. Research in this area has practical applications in the design of efficient heat exchangers, thermal management systems or nanomaterial-based devices.

Design/methodology/approach

Suitable set of variables is introduced to transform the PDEs (Partial differential equations) system into required ODEs (Ordinary differential equations) system. The transformed ODEs system is then solved numerically via finite difference method. Graphical artworks are made to predict the control of applicable transport parameters on surface entropy, Bejan number, Sherwood number, skin-friction, Nusselt number, temperature, velocity and concentration fields.

Findings

It is noticed from present numerical examination that Bejan number aggravates for improved estimations of concentration-difference parameter a_2, Eckert number E_c, thermal ratio parameter ?_w and radiation parameter R_d, whereas surface entropy condenses for flow performance index n, temperature-difference parameter a_1, thermodiffusion parameter N_t and mixed convection parameter ?. Sherwood number is enriched with the amplification of pedesis-motion parameter N_b, while opposite development is perceived for thermodiffusion parameter. Lastly, outcomes are matched with formerly published data to authenticate the present numerical investigation.

Originality/value

To the best of the authors' knowledge, no investigation has been reported yet that explains the entropic behavior with activation energy in the flowing of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 April 2017

Mikhail Sheremet, Ioan Pop, Hakan F. Öztop and Nidal Abu-Hamdeh

The main purpose of this numerical study is to study on entropy generation in natural convection of nanofluid in a wavy cavity using a single-phase nanofluid model.

Abstract

Purpose

The main purpose of this numerical study is to study on entropy generation in natural convection of nanofluid in a wavy cavity using a single-phase nanofluid model.

Design/methodology/approach

The cavity is heated non-uniformly from the wavy wall and cooled from the right side while it is insulated from the horizontal walls. The physical domain of the problem is transformed into a rectangular geometry in the computational domain using an algebraic coordinate transformation by introducing new independent variables ξ and η. The governing dimensionless partial differential equations with corresponding initially and boundary conditions were numerically solved by the finite difference method of the second-order accuracy. The governing parameters are Rayleigh number (Ra = 1000-100000), Prandtl number (Pr = 6.82), solid volume fraction parameter of nanoparticles (φ = 0.0-0.05), aspect ratio parameter (A = 1), undulation number (κ = 1-3), wavy contraction ratio (b = 0.1-0.3) and dimensionless time (τ = 0-0.27).

Findings

It is found that the average Bejan number is an increasing function of nanoparticle volume fraction and a decreasing function of the Rayleigh number, undulation number and wavy contraction ratio. Also, an insertion of nanoparticles leads to an attenuation of convective flow and enhancement of heat transfer.

Originality

The originality of this work is to analyze the entropy generation in natural convection within a wavy nanofluid cavity using single-phase nanofluid model. The results would benefit scientists and engineers to become familiar with the flow behaviour of such nanofluids, and will be a way to predict the properties of this flow for the possibility of using nanofluids in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 June 2020

S. Sarkar, R.N. Jana and S. Das

The purpose of this article is to analyze the heat and mass transfer with entropy generation during magnetohydrodynamics (MHD) flow of non-Newtonian Sisko nanofluid over a…

Abstract

Purpose

The purpose of this article is to analyze the heat and mass transfer with entropy generation during magnetohydrodynamics (MHD) flow of non-Newtonian Sisko nanofluid over a linearly stretching cylinder under the influence of velocity slip, chemical reaction and thermal radiation. The Brownian motion, thermophoresis and activation energy are assimilated in this nanofluid model. Convective boundary conditions on heat and mass transfer are considered. The physical model may have diverse applications in several areas of technology underlying thermohydrodynamics including supercritical fluid extraction, refrigeration, ink-jet printing and so on.

Design/methodology/approach

The dimensional governing equations are nondimensionalized by using appropriate similarity variables. The resulting boundary value problem is converted into initial value problem using the method of superposition and numerically computed by employing well-known fourth-order Runge–Kutta–Fehlberg approach along with shooting technique (RKF4SM). The quantitative impacts of emerging physical parameters on the velocity, temperature, concentration, skin friction coefficient, Nusselt number, Sherwood number, entropy generation rate and Bejan number are presented graphically and in tabular form, and the salient features are comprehensively discussed.

Findings

From graphical outcomes, it is concluded that the slip parameters greatly influence the flow characteristics. Fluid temperature is elevated with rising radiation parameter and thermal Biot number. Nanoparticle concentration is reported in decreasing form with activation energy parameter. Entropy is found to be an increasing function of magnetic field, Brownian motion and material parameters. The entropy is less generated for shear-thinning fluid compared to shear-thickening as well as Newtonian fluids in the system.

Originality/value

Till now no study has been documented to explore the impact of binary chemical reaction with Arrhenius activation energy on entropy generation in an MHD boundary layer flow of non-Newtonian Sisko nanofluid over a linear stretching cylinder with velocity slip and convective boundary conditions.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 November 2019

Muhammad Ijaz Khan, Salman Ahmad, Tasawar Hayat, M. Waleed Ahmad Khan and Ahmed Alsaedi

The purpose of this paper is to address entropy generation in flow of thixotropic nonlinear radiative nanoliquid over a variable stretching surface with impacts of inclined…

Abstract

Purpose

The purpose of this paper is to address entropy generation in flow of thixotropic nonlinear radiative nanoliquid over a variable stretching surface with impacts of inclined magnetic field, Joule heating, viscous dissipation, heat source/sink and chemical reaction. Characteristics of nanofluid are described by Brownian motion and thermophoresis effect. At surface of the sheet zero mass flux and convective boundary condition are considered.

Design/methodology/approach

Considered flow problem is mathematically modeled and the governing system of partial differential equations is transformed into ordinary ones by using suitable transformation. The transformed ordinary differential equations system is figure out by homotopy algorithm. Outcomes of pertinent flow variables on entropy generation, skin friction, concentration, temperature, velocity, Bejan, Sherwood and Nusselts numbers are examined in graphs. Major outcomes are concluded in final section.

Findings

Velocity profile increased versus higher estimation of material and wall thickness parameter while it decays through larger Hartmann number. Furthermore, skin friction coefficient upsurges subject to higher values of Hartmann number and magnitude of skin friction coefficient decays via materials parameters. Thermal field is an increasing function of Hartmann number, radiation parameter, thermophoresis parameter and Eckert number.

Originality/value

The authors have discussed entropy generation in flow of thixotropic nanofluid over a variable thicked surface. No such consideration is yet published in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 September 2019

Tahar Tayebi and Ali J. Chamkha

The purpose of this paper is to study the influence of magnetic field on entropy generation and natural convection inside an enclosure filled with a hybrid nanofluid and having a…

Abstract

Purpose

The purpose of this paper is to study the influence of magnetic field on entropy generation and natural convection inside an enclosure filled with a hybrid nanofluid and having a conducting wavy solid block. Also, the effect of fluid–solid thermal conductivity ratio is investigated.

Design/methodology/approach

The governing equations that are formulated in the dimensionless form are discretized via finite volume method. The velocity–pressure coupling is assured by the SIMPLE algorithm. Heat transfer balance is used to verify the convergence. The validation of the numerical results was performed by comparing qualitatively and quantitatively the results with previously published investigations.

Findings

The results indicate that the magnetic field and the conductivity ratio of the wavy solid block can significantly affect the dynamic and thermal field and, consequently, the heat transfer rate and entropy generation because of heat transfer, fluid friction and magnetic force.

Originality/value

To the best of the authors’ knowledge, the present numerical study is the first attempt to use hybrid nanofluid for studying the entropy generation because of magnetohydrodynamic natural convective flow in a square cavity with the presence of a wavy circular conductive cylinder. Irreversibilities due to magnetic effect are taken into account. The effect of fluid–solid thermal conductivity ratio is considered.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 538