Search results

1 – 10 of 598
Article
Publication date: 14 August 2007

Baodong Shao, Zhaowei Sun and Lifeng Wang

This paper sets out to optimize the shape and size of microchannels cooling heat sink, which has been widely used to cool electronic chip for its high heat transfer coefficient…

1574

Abstract

Purpose

This paper sets out to optimize the shape and size of microchannels cooling heat sink, which has been widely used to cool electronic chip for its high heat transfer coefficient and compact structure.

Design/methodology/approach

Sequential Quadratic Programming (SQP) method is used to optimize the cross‐section sizes of microchannels. Finite volume method is used to numerically simulate the cooling performance of optimal microchannel cooling heat sink.

Findings

The optimized cross‐section shape of microchannel is rectangular, and the width and depth of microchannel is 50 and 1,000 μm, respectively, the number of microchannels is 60, and the corresponding least thermal resistance is 0.115996°C/W. The results show that the heat transfer performance of microchannel cooling heat sink is affected intensively by its cross‐section shape and dimension. The convection heat resistance Rconv between inner surface in microchannels and working fluid has more influence in the total heat resistance. The heat flux of chip is 278 W/cm2 and, through the optimization microchannel cooling heat sink, the highest temperature in the chip can be kept below 42°C, which is about half of that without optimizing heat sink and can ensure the stability and reliability of chip.

Research limitations/implications

The convection heat transfer coefficient is calculated approximatively here for convenience, and that may induce some errors.

Originality/value

The optimized microchannels cooling heat sink may satisfy the request for removal of high heat flux in new‐generation chips.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 February 2024

Karthikeyan Paramanandam, Venkatachalapathy S, Balamurugan Srinivasan and Nanda Kishore P V R

This study aims to minimize the pressure drop across wavy microchannels using secondary branches without compromising its capacity to transfer the heat. The impact of secondary…

Abstract

Purpose

This study aims to minimize the pressure drop across wavy microchannels using secondary branches without compromising its capacity to transfer the heat. The impact of secondary flows on the pressure drop and heat transfer capabilities at different Reynolds numbers are investigated numerically for different wavy microchannels. Finally, different channels are evaluated using performance evaluation criteria to determine their effectiveness.

Design/methodology/approach

To investigate the flow and heat transfer capabilities in wavy microchannels having secondary branches, a 3D conjugate heat transfer model based on finite volume method is used. In conventional wavy microchannel, secondary branches are introduced at crest and trough locations. For the numerical simulation, a single symmetrical channel is used to minimize computational time and resources and the flow within the channels remains single-phase and laminar.

Findings

The findings indicate that the suggested secondary channels notably improve heat transfer and decrease pressure drop within the channels. At lower flow rates, the secondary channels demonstrate superior performance in terms of heat transfer. However, the performance declines as the flow rate increased. With the same amplitude and wavelength, the introduction of secondary channels reduces the pressure drop compared with conventional wavy channels. Due to the presence of secondary channels, the flow splits from the main channel, and part of the core flow gets diverted into the secondary channel as the flow takes the path of minimum resistance. Due to this flow split, the core velocity is reduced. An increase in flow area helps in reducing pressure drop.

Practical implications

Many complex and intricate microchannels are proposed by the researchers to augment heat dissipation. There are challenges in the fabrication of microchannels, such as surface finish and achieving the required dimensions. However, due to the recent developments in metal additive manufacturing and microfabrication techniques, the complex shapes proposed in this paper are feasible to fabricate.

Originality/value

Wavy channels are widely used in heat transfer and micro-fluidics applications. The proposed wavy microchannels with secondary channels are different when compared to conventional wavy channels and can be used practically to solve thermal challenges. They help achieve a lower pressure drop in wavy microchannels without compromising heat transfer performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 February 2023

Josué Costa-Baptista, Edith Roland Fotsing, Jacky Mardjono, Daniel Therriault and Annie Ross

The purpose of this paper is the design and experimental investigation of compact hybrid sound-absorbing materials presenting low-frequency and broadband sound absorption.

Abstract

Purpose

The purpose of this paper is the design and experimental investigation of compact hybrid sound-absorbing materials presenting low-frequency and broadband sound absorption.

Design/methodology/approach

The hybrid materials combine microchannels and helical tubes. Microchannels provide broadband sound absorption in the middle frequency range. Helical tubes provide low-frequency absorption. Optimal configurations of microchannels are used and analytical equations are developed to guide the design of the helical tubes. Nine hybrid materials with 30 mm thickness are produced via additive manufacturing. They are combinations of one-, two- and four-layer microchannels and helical tubes with 110, 151 and 250 mm length. The sound absorption coefficient of the hybrid materials is measured using an impedance tube.

Findings

The type of microchannels (i.e. one, two or four layers), the number of rotations and the number of tubes are key parameters affecting the acoustic performance. For instance, in the 500 Hz octave band (α500), sound absorption of a 30 mm thick hybrid material can reach 0.52 which is 5.7 times higher than the α500 of a typical periodic porous material with the same thickness. Moreover, the broadband sound absorption for mid-frequencies is reasonably high with and α1000 > 0.7. The ratio of first absorption peak wavelength to structure thickness λ/T can reach 17, which is characteristic of deep-subwavelength behaviour.

Originality/value

The concept and experimental validation of a compact hybrid material combining a periodic porous structure such as microchannels and long helical tubes are original. The ability to increase low-frequency sound absorption at constant depth is an asset for applications where volume and weight are constraints.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 March 2023

Saeed Ghorbani, Amin Emamian, Amin Amiri Delouei, R. Ellahi, Sadiq M. Sait and Mohamed Bechir Ben Hamida

The purpose of this study is to investigate heat transfer and electrokinetic non-Newtonian flow in a rectangular microchannel in the developed and transient states.

Abstract

Purpose

The purpose of this study is to investigate heat transfer and electrokinetic non-Newtonian flow in a rectangular microchannel in the developed and transient states.

Design/methodology/approach

The Carreau–Yasuda model was considered to capture the non-Newtonian behavior of the fluid. The dimensionless forms of governing equations, including the continuity equation for the Carreau–Yasuda fluid, are numerically solved by considering the volumetric force term of electric current (DC).

Findings

The impact of pertinent parameters such as electrokinetic diameter (R), Brinkman number and Peclet number is examined graphically. It is observed that for increasing R, the bulk velocity decreases. The velocity of the bulk fluid reaches from the minimum to the maximum state across the microchannel over time. At the electrokinetic diameter of 400, the maximum velocity was obtained. Temperature graphs are plotted with changes in the various Brinkman number (0.1 < Br < 0.7) at different times, and local Nusselt are compared against changes in the Peclet number (0.1 < ℘e < 0.5). The results of this study show that by increasing the Brinkman number from 0.25 to 0.7, the temperature along the microchannel doubles. It was observed that increasing the Peclet number from 0.3 to 0.5 leads to 200% increment of the Nusselt number along the microchannel in some areas along the microchannel. The maximum temperature occurs at Brinkman number of 0.7 and the maximum value of the local Nusselt number is related to Peclet number 0.5. Over time in the transient mode, the Nusselt number also decreases along the microchannel. By the increasing of time, the temperature increases at given value of Brinkman, which is insignificant at Brinkman number of 0.1. The simulation results have been verified by Newtonian and non-Newtonian flows with adequate accuracy.

Originality/value

This study contributes to discovering the effects of transient flow of electroosmotic flow for non-Newtonian Carreau–Yasuda fluid and transient heat transfer through rectangular microchannel. To the authors’ knowledge, the said investigation is yet not available in existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 August 2019

Minqiang Pan, Hongqing Wang, Yujian Zhong, Tianyu Fang and Xineng Zhong

With the increasing heat dissipation of electronic devices, the cooling demand of electronic products is increasing gradually. A water-cooled microchannel heat exchanger is an…

430

Abstract

Purpose

With the increasing heat dissipation of electronic devices, the cooling demand of electronic products is increasing gradually. A water-cooled microchannel heat exchanger is an effective cooling technology for electronic equipment. The structure of a microchannel has great impact on the heat transfer performance of a microchannel heat exchanger. The purpose of this paper is to analyze and compare the fluid flow and heat transfer characteristic of a microchannel heat exchanger with different reentrant cavities.

Design/methodology/approach

The three-dimensional steady, laminar developing flow and conjugate heat transfer governing equations of a plate microchannel heat exchanger are solved using the finite volume method.

Findings

At the flow rate range studied in this paper, the microchannel heat exchangers with reentrant cavities present better heat transfer performance and smaller pressure drop. A microchannel heat exchanger with trapezoidal-shaped cavities has best heat transfer performance, and a microchannel heat exchanger with fan-shaped cavities has the smallest pressure drop.

Research limitations/implications

The fluid is incompressible and the inlet temperature is constant.

Practical implications

It is an effective way to enhance heat transfer and reduce pressure drop by adding cavities in microchannels and the data will be helpful as guidelines in the selection of reentrant cavities.

Originality/value

This paper provides the pressure drop and heat transfer performance analysis of microchannel heat exchangers with various reentrant cavities, which can provide reference for heat transfer augmentation of an existing microchannel heat exchanger in a thermal design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 November 2018

Esmaeil Jalali and Arash Karimipour

In this paper, the forced convection heat transfer of the nanofluid composed of water and AL2O3 nanoparticles is simulated in a two-dimensional horizontal microchannel by…

Abstract

Purpose

In this paper, the forced convection heat transfer of the nanofluid composed of water and AL2O3 nanoparticles is simulated in a two-dimensional horizontal microchannel by injecting the lower wall. The upper wall of the microchannel is 303 K at temperature TH. On the lower wall of the microchannel, there are three holes for flow injection. Other parts of the wall are insulated. In this paper, the effect of parameters such as Reynolds number, slip coefficient and volume fraction of nanoparticles is investigated.

Design/methodology/approach

The boundary condition of the slip velocity is considered on the upper and lower walls of the microchannel. In this work, the flow of nanofluid in the microchannel is considered to be slow, permanent and Newtonian. In the present study, the effect of injection through the microchannel wall on the slip velocity is examined for the first time.

Findings

The results are also presented as velocity profiles and Nusselt number diagrams. It was found that the Nusselt number increases with increasing the amount of slip coefficient of velocity and the weight percentage of solid nanoparticles. The rate of this increase is higher in the high values of the Reynolds number.

Originality/value

A novel paper concerned the simulation of cross-flow injection effects on the slip velocity and temperature domain of a nanofluid flow inside a microchannel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 June 2019

Vahid Jaferian, Davood Toghraie, Farzad Pourfattah, Omid Ali Akbari and Pouyan Talebizadehsardari

The purpose of this study is three-dimensional flow and heat transfer investigation of water/Al2O3 nanofluid inside a microchannel with different cross-sections in two-phase mode.

Abstract

Purpose

The purpose of this study is three-dimensional flow and heat transfer investigation of water/Al2O3 nanofluid inside a microchannel with different cross-sections in two-phase mode.

Design/methodology/approach

The effect of microchannel walls geometry (trapezoidal, sinusoidal and stepped microchannels) on flow characteristics and also changing circular cross section to trapezoidal cross section in laminar flow at Reynolds numbers of 50, 100, 300 and 600 were investigated. In this study, two-phase water/Al2O3 nanofluid is simulated by the mixture model, and the effect of volume fraction of nanoparticles on performance evaluation criterion (PEC) is studied. The accuracy of obtained results was compared with the experimental and numerical results of other similar papers.

Findings

Results show that in flow at lower Reynolds numbers, sinusoidal walls create a pressure drop in pure water flow which improves heat transfer to obtain PEC < 1. However, in sinusoidal and stepped microchannel with higher Reynolds numbers, PEC > 1. Results showed that the stepped microchannel had higher pressure drop, better thermal performance and higher PEC than other microchannels.

Originality/value

Review of previous studies showed that existing papers have not compared and investigated nanofluid in a two-phase mode in inhomogeneous circular, stepped and sinusoidal cross and trapezoidal cross-sections by considering the effect of changing channel shape, which is the aim of the present paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 February 2022

Shivam Doshi, Gopal Kashyap and Nishant Tiwari

This study aims to capture the heat transfer and entropy generation characteristics of temperature-dependent nano-encapsulated phase change material (NEPCM) slurry in a hybrid…

Abstract

Purpose

This study aims to capture the heat transfer and entropy generation characteristics of temperature-dependent nano-encapsulated phase change material (NEPCM) slurry in a hybrid wavy microchannel. In addition, the effect of substrate material combined with NEPCM slurry on conjugate heat transfer condition is captured for different microchannel heat sinks.

Design/methodology/approach

A novel “hybrid wavy microchannel” is proposed to enhance the overall heat transfer and reduce the pressure drop by combining wavy and raccoon geometry. NEPCM–water slurry is implied in the hybrid wavy, conventional wavy and raccoon microchannel. A user-defined function (UDF) is used to observe the effect of phase-change of paraffin material in thermophysical properties of NEPCM–water nanofluid. All three (hybrid, wavy, raccoon) microchannels are engraved on a rectangular substrate of 1.8 mm width (ωs) and 30 mm length (L), respectively. For hybrid, wavy and raccoon microchannel, waviness (γ) of 0.067 is selected for the investigation.

Findings

The result shows that NEPCM particle presence reduces the fluid domain temperature. The thermal performance of proposed Heat sink 2 is found better than the Heat sink 1. The effect of the geometrical modification, wall thermal conductivity, different volumetric concentrations of nanoparticles (ϕ ∼ 1 – 5%) and Reynolds number (Re ∼ 100 – 500) on thermodynamic irreversibility is also observed. Additionally, the effect of thermal and frictional entropy generation is reduced with a combination of NEPCM slurry and higher conductive material for all heat sinks.

Practical implications

A combination of NEPCM slurry with laminar flow microchannel cooling system emerged as a better alternative over other cooling techniques for higher power density devices such as microprocessors, electronic radar systems, aerospace applications, semiconductors, power electronics in modern electronic vehicles, high power lasers, etc.

Originality/value

The phase-change process of the NEPCM slurry is tracked under conjugate heat transfer in a hybrid wavy microchannel. Furthermore, the phase-change process of NEPCM slurry is captured with different heat sink materials (SS316, silicon and copper) under conjugate heat transfer situation for different heat sinks and concentrations (ϕ ∼ 1–5) of NEPCM.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 September 2018

Fakhrodin Lalegani, Mohammad Reza Saffarian, Ahmadreza Moradi and Ebrahim Tavousi

According to very small dimensions of the microchannels, producing a microchannel with smooth surfaces is approximately impossible. The surface roughness can have a specific…

315

Abstract

Purpose

According to very small dimensions of the microchannels, producing a microchannel with smooth surfaces is approximately impossible. The surface roughness can have a specific effect on microchannel performances. This paper aims to investigate the changes in friction and pressure drop in the microchannels by considering the different roughness elements on microchannel wall and changes in elementary geometry and flow conditions. Results show a significant effect of roughness on the pressure drop and friction.

Design/methodology/approach

Two-dimensional fluid flow in the rough microchannels is analyzed using FLUENT. Microchannels have a height of 50 µm. Water at room temperature (25°C) has been used as working fluid. The Reynolds numbers are considered in laminar flow range and from 50 to 300.

Findings

The results show that the value of friction factor reduces nonlinearly with an increase in Reynolds number. But, the pressure drops and the Poiseuille number in the microchannels increase with an increase in Reynolds number. The values of the pressure drop and the friction factor increase by increasing the height and size of the roughness elements, but these values reduce with an increase in the distance of roughness elements.

Originality/value

The roughness elements types in this research are rectangular, trapezoidal, elliptical, triangular and complex (composed of multiple types of roughness elements). The effects of the Reynolds number, roughness height, roughness distance and roughness size on the pressure drop and friction in the rough microchannels are investigated and discussed. Furthermore, differences between the effects of five types of roughness elements are identified.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2005

Dong Liu and Suresh V. Garimella

To provide modeling approaches of increasing levels of complexity for the analysis of convective heat transfer in microchannels which offer adequate descriptions of the thermal…

2584

Abstract

Purpose

To provide modeling approaches of increasing levels of complexity for the analysis of convective heat transfer in microchannels which offer adequate descriptions of the thermal performance, while allowing easier manipulation of microchannel geometries for the purpose of design optimization of microchannel heat sinks.

Design/methodology/approach

A detailed computational fluid dynamics model is first used to obtain baseline results against which five approximate analytical approaches are compared. These approaches include a 1D resistance model, a fin approach, two fin‐liquid coupled models, and a porous medium approach. A modified thermal boundary condition is proposed to correctly characterize the heat flux distribution.

Findings

The results obtained demonstrate that the models developed offer sufficiently accurate predictions for practical designs, while at the same time being quite straightforward to use.

Research limitations/implications

The analysis is based on a single microchannel, while in a practical microchannel heat sink, multiple channels are employed in parallel. Therefore, the optimization should take into account the impact of inlet/outlet headers. Also, a prescribed pumping power may be used as the design constraint, instead of pressure head.

Practical implications

Very useful design methodologies for practical design of microchannel heat sinks.

Originality/value

Closed‐form solutions from five analytical models are derived in a format that can be easily implemented in optimization procedures for minimizing the thermal resistance of microchannel heat sinks.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 598