Search results

1 – 10 of 143
Article
Publication date: 26 August 2014

Jianxin Shen, Kang Wang, Dan Shi, Canfei Wang and Mengjia Jin

The purpose of this paper is to present the optimal design of a low-cost interior permanent magnet (IPM) alternating current (AC) motor. It examines the influence of the permanent

Abstract

Purpose

The purpose of this paper is to present the optimal design of a low-cost interior permanent magnet (IPM) alternating current (AC) motor. It examines the influence of the permanent magnet (PM) materials, and proposes a simple and practical method of optimizing the air-gap field to achieve sinusoidal back electromotive force (EMF), and to reduce the cogging torque.

Design/methodology/approach

IPM AC motors with different magnet materials and various topologies are comparatively studied. Finite element method (FEM) is used to predict the performances of these designs. Material costs and manufacture costs are both taken into account. Finally, an optimized design is prototyped and tested, validating the design considerations.

Findings

In an IPM AC motor, even if the rotor outer profile is round, the air-gap field distribution can be fined, while the cogging torque can be significantly reduced, by properly shaping the stator tooth tips. Nevertheless, this technique is usually applicable to motor configurations with concentrated windings, but not to those with distributed windings.

Originality/value

While using ferrite magnets for PM AC motors with a kW power, interior magnets are usually inserted in V-shaped slots, and the rotor outer profile is often shaped in order to enhance the air-gap field distribution. However, such a rotor configuration usually increases the manufacture costs, and also deteriorates the consistency of mass production. Therefore, a new motor configuration with a round rotor outer profile and shaped stator tooth tips is proposed. It can not only overcome the aforementioned problems, but also improve the motor performance.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

Wojciech Chlebosz and Grzegorz Ombach

In order to reduce CO2 emissions of new cars many hydraulic and mechanical systems like e.g.: water pump, oil pump, power steering, clime compressor have been exchanged with pure…

Abstract

Purpose

In order to reduce CO2 emissions of new cars many hydraulic and mechanical systems like e.g.: water pump, oil pump, power steering, clime compressor have been exchanged with pure electromechanical systems, which are driven only on request. This helps to reduce fuel consumption. This trend requires of utilization of modern brushless electric motors, which are controlled from power electronic control unit – ECU. In today's car can be found between 30 to 150 electric motors. Many of them are still simple brush type with ferrite magnets. Also in this area, drift in the direction of brushless motors can bee seen, because of higher efficiency, longer lifetime, lower noise, better EMC and more controllable torque vs speed characteristic. There are different technological solutions, which can been used in the area of brushless motors in order to reduce size and cost of single component. One major factor of BLDC/AC motor is rear earth permanent magnet material used during production. A magnet material cost could be in the range from 30 percent (basis price 2010) up to 90 percent (basis price 2011) of total material motor cost, depends on actual rear earth material price level. In order to reduce magnet cost, the aim of this paper is to find the most robust motor design, which can be resistant against maximum temperature and phase current amplitude for the same magnet material properties, coercive force – Hcj. This behaviour is called demagnetization property.

Design/methodology/approach

Analysis was performed based on review of literature, own theoretical and practical research and experience in the area of electromechanical systems for automotive application. During motor analysis computer numerical simulation method, CAD and experiment were used.

Findings

As a result, comparison of different motors' topologies with different properties of magnet materials is presented. The worked out methodology shows very good correlation between simulations and measurements. This work can be used in order to reduce test effort and reduce cost of design.

Practical implications

The presented methodology reduces for new designs test effort and development cost and gives an implication of robust motor topology for demagnetization effects.

Originality/value

It is the first paper where demagnetization effects have been studied theoretically and in laboratory in order to find the most robust design, reduce magnet cost by reduction of dysprosium content and develop simulation procedure for analysis of demagnetizations behaviours of interior and surface permanent magnet.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

Jianxin Shen, Dan Shi, Canfei Wang, Peng Li, Kang Wang and Mengjia Jin

The purpose of this paper is to investigate a new cause of torque ripple in interior permanent magnet (IPM) alternating current (AC) motors, which is common but has hardly been…

Abstract

Purpose

The purpose of this paper is to investigate a new cause of torque ripple in interior permanent magnet (IPM) alternating current (AC) motors, which is common but has hardly been studied. The paper also proposes a new method to suppress the total torque ripple.

Design/methodology/approach

Besides the well-known cogging torque and mutual torque ripple, a new ripple which exists in the reluctance torque is found. It is verified with both analytical model and finite element analysis. Also, a novel method is proposed to reduce the reluctance torque ripple, with experimental validation.

Findings

It is usually said that the winding inductances of an IPM AC motor vary sinusoidally with the rotor position, thus, the d-axis and q-axis inductances are constant, whilst the reluctance torque is smooth. However, in most practical motors, the inductances vary irregularly, causing a significant ripple in the reluctance torque. Moreover, in machine design, it is always desirable to suppress the cogging torque as much as possible. However, in this paper, it is proved that the cogging torque can remain and be used to cancel the reluctance torque ripple.

Originality/value

Torque ripple in the IPM AC motors is usually reduced by suppressing the cogging torque and making both back electromotive forces and currents sinusoidal. However, this paper reveals the new cause of the torque ripple due to the irregular variation of winding inductances. Moreover, the paper gives a new method to cancel the reluctance torque ripple with the cogging torque.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

Jian‐Xin Shen, He Hao, Can‐Fei Wang and Meng‐Jia Jin

The aim of this paper is to present a new sensorless control strategy using a flux observer, which is particularly designed for taking into account the rotor saliency and winding…

Abstract

Purpose

The aim of this paper is to present a new sensorless control strategy using a flux observer, which is particularly designed for taking into account the rotor saliency and winding inductance variation in an interior permanent magnet synchronous motor (IPMSM).

Design/methodology/approach

In a PMSM, the magnets‐excited flux‐linkage, i.e. the rotor flux‐linkage, can be expressed as a vector. Its phase angle stands for the rotor position. Therefore, if this vector is estimated with an observer, the rotor position can be obtained without a position sensor, consequently, sensorless control can be realized. The main object of this paper is to establish and implement a model of rotor flux observer, specifically for IPMSM.

Findings

The flux observer model is built on the d‐q‐0 frame, using unequal values of the d‐axis inductance Ld and q‐axis inductance Lq to represent the IPMSM rotor saliency. Its digital implementation is proposed, whilst the sensorless control strategy is experimentally verified.

Research limitations/implications

Insignificant error exists in the estimated rotor position, probably due to the non‐sinusoidal variation of winding inductance. Further improvement of the observer model is preferable.

Originality/value

In previous works, the rotor flux observer is only applied to surface‐mounted permanent magnet synchronous motors (SPMSM) in which the winding inductance is constant. However, the proposed observer can deal with the rotor saliency and inductance variation in IPMSM, whilst its digital implementation is also new.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 July 2010

Yoshihiro Kawase, Tadashi Yamaguchi, Tomohiro Umemura, Yoshiyasu Shibayama, Koji Hanaoka, Shingo Makishima and Kazuya Kishida

The purpose of this paper is to clarify the electrical loss of an interior permanent magnet (IPM) motor driven by the pulse‐width modulation (PWM) inverter with various carrier…

Abstract

Purpose

The purpose of this paper is to clarify the electrical loss of an interior permanent magnet (IPM) motor driven by the pulse‐width modulation (PWM) inverter with various carrier frequencies quantitatively.

Design/methodology/approach

An IPM motor driven by the PWM inverter was simulated using the three‐dimensional finite‐element method while changing various carrier frequencies of the PWM inverter. The calculated results are compared with the calculated results differing the number of permanent magnet division.

Findings

The eddy current loss in the permanent magnets decreases as the carrier frequency increases. In the case of low‐carrier frequency, the eddy current loss greatly decreases as the number of permanent magnet division increases. However, the effect of the eddy current loss decreases by the number of permanent magnet division as the carrier frequency increases.

Originality/value

The paper describes the electrical loss of an IPM motor driven by the PWM inverter with various carrier frequencies.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2011

Grzegorz Ombach

In the last few years, the understanding of environmental problems has grown. Car producers – original equipment manufacturers – are aiming to reduce fuel consumption and…

1110

Abstract

Purpose

In the last few years, the understanding of environmental problems has grown. Car producers – original equipment manufacturers – are aiming to reduce fuel consumption and pollution. In order to fulfil these aims, new technologies have been launched. Many hydraulics systems have been removed and replaced with electric ones, e.g. power steering, water and oil pump, etc. In this paper, an electromechanical subsystem used in an automotive application is analyzed. The subsystem is composed of interior permanent synchronous magnet motor and electronic control unit. The range of mechanical output power for studied system is up to 1 kW. The aim of this paper is to compare electromechanical systems working with different on‐board voltage levels in order to find the optimum balance between motors' and electronics' efficiency. This will help to decrease the total system's weight, the consequence of which will decrease fuel consumption and reduce CO2 emissions.

Design/methodology/approach

During the analysis, the reduced order modelling (ROM) techniques has been applied. First, with utilization of finite‐elemente‐methode the basic motor's parameter like: synchronous inductance and flux per pole as a function of the direct‐axis current and also the quadrature‐axis current are calculated. In the second step, these parameters are used in the system simulation. During this simulation, the maximum torque per ampere control strategy together with ROM techniques was used.

Findings

As a result, the performance of the system for different voltage levels has been obtained. Additionally, the important factors for an electromechanical system, such as maximum power density, sizing and cost of the total electromechanical system, have been compared.

Practical implications

The performed comparison shows that the cost optimized system should work with the higher voltage, where the electric motor size is reduced ca. 25 per cent. This result is also valid for different electromechanical systems in an automotive area, e.g. automated manual transmission, engine cooling and electric compressor.

Originality/value

It is the first paper, where electric power steering system design for different on‐board voltage levels has been systematically analyzed and compared. Results from this paper can be also applied to different electromechanical systems mounted in hybrid or electric cars.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 November 2021

Hayaho Sato and Hajime Igarashi

This paper aims to present a deep learning–based surrogate model for fast multi-material topology optimization of an interior permanent magnet (IPM) motor. The multi-material…

Abstract

Purpose

This paper aims to present a deep learning–based surrogate model for fast multi-material topology optimization of an interior permanent magnet (IPM) motor. The multi-material topology optimization based on genetic algorithm needs large computational burden because of execution of finite element (FE) analysis for many times. To overcome this difficulty, a convolutional neural network (CNN) is adopted to predict the motor performance from the cross-sectional motor image and reduce the number of FE analysis.

Design/methodology/approach

To predict the average torque of an IPM motor, CNN is used as a surrogate model. From the input cross-sectional motor image, CNN infers dq-inductance and magnet flux to compute the average torque. It is shown that the average torque for any current phase angle can be predicted by this approach, which allows the maximization of the average torque by changing the current phase angle. The individuals in the multi-material topology optimization are evaluated by the trained CNN, and the limited individuals with higher potentials are evaluated by finite element method.

Findings

It is shown that the proposed method doubles the computing speed of the multi-material topology optimization without loss of search ability. In addition, the optimized motor obtained by the proposed method followed by simplification for manufacturing is shown to have higher average torque than a reference model.

Originality/value

This paper proposes a novel method based on deep learning for fast multi-material topology optimization considering the current phase angle.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2011

Elena A. Lomonova, Evgeny Kazmin, Yang Tang and Johannes J.H. Paulides

Today's brushless permanent magnet (PM) drive systems usually adopt motors including the advancements in magnet technology, e.g. better thermal characteristics and higher magnetic…

Abstract

Purpose

Today's brushless permanent magnet (PM) drive systems usually adopt motors including the advancements in magnet technology, e.g. better thermal characteristics and higher magnetic strength. By this means, they become capable in the roughest applications yet maintain a high accuracy at competitive prices. These drive systems are not only appreciated for their high performance, but they are also advantageous for the applications requiring tough, dependable, and continuous‐duty operations, e.g. hybrid or complete electrical vehicles, extruders, wire drawers, winders, cranes, conveyors, and roll formers. The purpose of this paper is to provide an extended comparative study of the different motor configurations for the hybrid electric drive application, aiming at a compromise between high power density and extended speed capability.

Design/methodology/approach

To suit strict design requirements, such as the very limited volumetric envelope, high‐output power, wide constant power speed range, and pre‐selected in‐direct cooling system, the constraint variants of possible motor types are researched.

Findings

Considerably, high torque density and an extended speed range limit the options of PM rotor configurations for this motor design. The considered rotor configurations are the surface PM (SPM) and interior PM (IPM) types. The advantage of the (non‐salient) SPM configuration is its applicability with higher levels of magnetic flux densities without causing significant saturation in the rotor. On the other hand, an IPM rotor, which places the magnets in special rotor slots, open or closed (by saturation bridges), can operate on both the reluctance torque and the magnet alignment torque. This generally leads to a better performance in a wide speed range. However, this advantage can be eliminated by severe iron saturation resulting from the required high‐specific power.

Originality/value

The most appropriate rotor configuration will finally be selected between the two considered types, depending on detailed electromagnetic and thermal analysis. This paper usefully studies the correlation between the motor parameters required for high power density and field‐weakening performance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 November 2016

Lidija Petkovska, Goga Vladimir Cvetkovski and Paul Lefley

In the present paper the influence of the magnetization patterns of rotor magnets on the performance characteristics of a surface permanent magnet (SPM) motor has been…

Abstract

Purpose

In the present paper the influence of the magnetization patterns of rotor magnets on the performance characteristics of a surface permanent magnet (SPM) motor has been investigated. The purpose of this paper is to show how the electromagnetic and electromechanical characteristics of this type of motor can be significantly changed by applying various magnetization patterns of permanent magnets (PM) on the rotor surface.

Design/methodology/approach

First, a survey of possible and most frequently used magnetization patterns for PM motors is presented. The research is focussed on the comparison of performance characteristics and is developed at three levels. The study starts with investigation of a conventional SPM motor having segmented PM, and two magnetization patterns are considered: parallel and radial. As there was no significant difference in motor performance at parallel and radial magnetization, for further investigation only radial magnetization, being more conventional, was considered. In the second step, the counterparts of SPM with two Halbach array configurations, under the constraint of fixed magnet volume, are studied. Finally, detailed comparative analyses of SPM at radial, Halbach 1, and Halbach 2 magnetic patterns are presented. The advantages and drawbacks of the suggested magnetic configurations are then discussed.

Findings

The authors have shown how the magnetization pattern of rotor PM can have a substantial impact on the SPM motor performance characteristics. From the analysis of magnetic field properties at various types of magnetization, it is observed that both the shape and the rates of the characteristics, for radial magnetization and Halbach 2 configuration, exhibit similar features. This is because the Halbach 2 array cancels the magnetic flux above the PM – that is, it strengthens the magnetic field in the rotor, and enhances the coupling between the rotor and stator magnetic field. It is worth emphasizing that, because of less saturation of the magnetic core and lower iron loss at Halbach 1 and Halbach 2 magnetization, it is possible to increase the armature current and consequently increase the electromagnetic torque. This finding could be an interesting for further research.

Originality/value

The paper presents an original comparative analysis of the performance characteristics of a surface permanent motor at various magnetization patterns. The novelty of the paper is seen in the introduction of two Halbach magnetization arrays for PM and improvement of the performance characteristics of the analysed motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 143