Search results

1 – 10 of 78
Article
Publication date: 1 January 2012

Luigi Alberti, Nicola Bianchi and Samad Taghipour Boroujeni

To purpose of this paper is to introduce a procedure to compute the d‐ and q‐axis parameters of the induction motor.

Abstract

Purpose

To purpose of this paper is to introduce a procedure to compute the d‐ and q‐axis parameters of the induction motor.

Design/methodology/approach

A finite element procedure, based on the d‐ and q‐axis model of the induction motor is adopted.

Findings

Such a procedure is well suited to analyse IM with anisotropic rotor, where an intentionally created saliency is introduced in the rotor bar geometry, so as to detect the IM rotor position without sensor.

Originality/value

The proposed procedure allows one to evaluate the sensorless control capability of the IM. It will be useful for both analysis of the IM performance and design of the machine itself.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 August 2021

Mohsen Rostami, Peyman Naderi and Abbas Shiri

The purpose of this paper is to propose a saturable model based on the magnetic equivalent circuit (MEC) for evaluating the electromagnetic performance of the variable area…

Abstract

Purpose

The purpose of this paper is to propose a saturable model based on the magnetic equivalent circuit (MEC) for evaluating the electromagnetic performance of the variable area resolver.

Design/methodology/approach

The equivalent circuit is developed where three different reluctance types are used to calculate permeances based on geometrical approximations. The proposed model typically has two types of equations, including the magnetic and electrical equations. The magnetic and electrical equations are related to the resolver core and the windings, respectively. Applying the well-known trapezoidal method, the magnetic and electrical equations can be simultaneously solved. A nonlinearity of the magnetic equations, the algebraic equations system, which is obtained from Kirchhoff’s laws, should be solved by the Newton-Raphson technique in each step-time.

Findings

The flexible MEC model, in which the number of flux tubes in different parts of the resolver can be arbitrarily selected, is proposed to analyze the variable reluctance resolver. Besides, the design parameters such as geometrical dimensions, windings arrangement and a number of the rotor saliencies can be chosen as desired. To consider the effect of time harmonics, a new nonlinear function is used for the core magnetization. Furthermore, different winding layouts can be implemented in the model to take space harmonics into account. The model obtained results are compared with the finite element method in terms of accuracy and simulation time.

Originality/value

Generally, the accuracy of the predictions in the MEC method is dependent on the number of flux tubes; therefore, the flexibility of the proposed MEC model in its capability to choose the desired number of flux paths is the advantage of this work. Moreover, the proposed model can analyze both wound and saliency rotor resolvers by changing the design parameters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 September 2022

Ali Jamali Fard and Mojtaba Mirsalim

Rotor shape optimization is crucial in designing synchronous reluctance machines (SynRMs) because the machine performance is directly proportional to the rotor’s magnetic saliency

Abstract

Purpose

Rotor shape optimization is crucial in designing synchronous reluctance machines (SynRMs) because the machine performance is directly proportional to the rotor’s magnetic saliency ratio. The rotor geometry in synchronous reluctance machines is complex, and many geometrical parameters must be optimized. When fluid flux-barrier geometry is desirable, using analytic equations to prepare the rotor geometry for finite element analysis could be tedious. This paper aims to provide a robust numerical procedure to draw the fluid flux-barrier geometry in transversally laminated radial flux inner and outer rotor SynRMs by directly solving the magnetic vector potential equation using the finite difference method..

Design/methodology/approach

In this paper, the goal is to have a robust procedure for drawing the rotor geometry for an arbitrary number of slots (Ns), poles (p) and flux-barrier layers (Nfb). Therefore, this paper targeted several combinations to investigate the performance of the proposed algorithm. The MATLAB software is used to implement the proposed algorithm. The ANSYS Maxwell software is used for counterpart finite element simulation to check the correctness of the results derived by the proposed method.

Findings

Several inner and outer rotor SynRMs considering a different number of poles and a different number of flux-barrier layers per pole are studied to investigate the performance of the proposed algorithm. Results corresponding to each case are presented, and it is shown that the method is robust, flexible and fast enough, which could be used for the generation of the rotor geometry for the finite element analysis effectively.

Originality/value

The value of the proposed algorithm is its simplicity and straightforwardness in its implementation for the preparation of the rotor geometry with the desired fluid flux-barrier layer curvature resolution suitable for the finite element analysis. The procedure presented in this paper is based on the ideal magnetic loading concept, and in future works, a similar idea could be used for linear and axial flux SynRMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

Jian‐Xin Shen, He Hao, Can‐Fei Wang and Meng‐Jia Jin

The aim of this paper is to present a new sensorless control strategy using a flux observer, which is particularly designed for taking into account the rotor saliency and winding…

Abstract

Purpose

The aim of this paper is to present a new sensorless control strategy using a flux observer, which is particularly designed for taking into account the rotor saliency and winding inductance variation in an interior permanent magnet synchronous motor (IPMSM).

Design/methodology/approach

In a PMSM, the magnets‐excited flux‐linkage, i.e. the rotor flux‐linkage, can be expressed as a vector. Its phase angle stands for the rotor position. Therefore, if this vector is estimated with an observer, the rotor position can be obtained without a position sensor, consequently, sensorless control can be realized. The main object of this paper is to establish and implement a model of rotor flux observer, specifically for IPMSM.

Findings

The flux observer model is built on the d‐q‐0 frame, using unequal values of the d‐axis inductance Ld and q‐axis inductance Lq to represent the IPMSM rotor saliency. Its digital implementation is proposed, whilst the sensorless control strategy is experimentally verified.

Research limitations/implications

Insignificant error exists in the estimated rotor position, probably due to the non‐sinusoidal variation of winding inductance. Further improvement of the observer model is preferable.

Originality/value

In previous works, the rotor flux observer is only applied to surface‐mounted permanent magnet synchronous motors (SPMSM) in which the winding inductance is constant. However, the proposed observer can deal with the rotor saliency and inductance variation in IPMSM, whilst its digital implementation is also new.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 April 2022

Ali Jamali Fard and Mojtaba Mirsalim

During the design process of synchronous reluctance motors (SynRMs), one crucial step, after its main dimensioning, is optimizing the rotor geometry for maximum average torque and…

107

Abstract

Purpose

During the design process of synchronous reluctance motors (SynRMs), one crucial step, after its main dimensioning, is optimizing the rotor geometry for maximum average torque and minimum torque ripple. However, because of the complexity of rotor flux-barrier layers geometry, the number of rotor geometrical parameters is high and this step could be quite complex and time-consuming. To obtain a good performance, one needs a robust algorithm to optimize the rotor geometry. The purpose of this paper is to present a sequential iterative method for rotor shape optimization in SynRMs based on the per-unit rotor model to maximize the average torque and minimize the torque ripple.

Design/methodology/approach

In the presented method, at first, rotor geometrical parameters are classified into several groups based on their geometrical similarities, and then optimization is done on these individual groups iteratively. The method starts with an arbitrary feasible rotor geometry and proceeds to optimize it. Because the method’s performance depends on initial rotor geometry, different cases are studied to investigate the convergence and robustness of the method. The MATLAB software is used to implement the optimization algorithm, and the ANSYS Maxwell software is used for the finite element analysis.

Findings

The performance of the proposed method is studied on a three-phase 0.75 kW-1,500 rpm permanent magnet assisted SynRM. The results show that the method improves the average torque while reducing the torque ripple. Even if the method starts with an inappropriate initial rotor geometry, it is robust enough and converges within an acceptable number of iterations.

Originality/value

The value of this paper is in introducing a per-unit rotor model. When the authors optimize the rotor geometry for a specific motor rating, it can be scaled up or down for other ratings with little effort. In this work, the number of rotor poles is four and the number of rotor flux-barrier layers per pole is three. Other combinations could be analyzed in future studies.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

Haiwei Cai, Bo Guan, Longya Xu and Woongchul Choi

The purpose of this paper is to present optimally designed synchronous reluctance machine (SynRM) to demonstrate the feasibility of eliminating the use of rare earth permanent…

205

Abstract

Purpose

The purpose of this paper is to present optimally designed synchronous reluctance machine (SynRM) to demonstrate the feasibility of eliminating the use of rare earth permanent magnet (PM) in electric machine for vehicle traction applications.

Design/methodology/approach

A typical rare earth interior permanent magnet (IPM) machine is used as the benchmark to conduct the optimal design study. Based on the flux distribution, major changes are made to the rotor lamination design. Enhanced torque production and lower torque ripple are specifically targeted as the two main objectives of the proposed design approach.

Findings

As a result, the optimally designed SynRM can achieve performance very close to that of the benchmark PM machine with a potential for further improvement.

Originality/value

Discussions of IPM replacement by optimally designed SynRM in electrical and hybrid electrical vehicles are given in terms of performance and cost.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2018

Ya Li, Xiping Liu and Zhangqi Liu

This paper aims to present an interior permanent magnet synchronous machine (IPMSM) with double-layer PMs used for electric vehicles, of which the integrated simulation of…

Abstract

Purpose

This paper aims to present an interior permanent magnet synchronous machine (IPMSM) with double-layer PMs used for electric vehicles, of which the integrated simulation of electromagnetic field, stress field and temperature field are analyzed.

Design/methodology/approach

Some electromagnetic characteristics including iron loss, efficiency and flux linkage are obtained by finite element analysis. The mechanical strength of rotor at the maximum speed and the temperature rise at the rated load are calculated by three-dimensional finite element analysis (FEA).

Findings

The results show that the presented IPMSM can work with sufficient mechanical strength, machine temperature rise and high efficiency during field-weakening operation. The experiments were carried out to verify the FEA, and acceptable results can be achieved.

Originality/value

This paper proposed a novel IPMSM with the double-layer permanent magnets, which is designed and checked by the multi-physics fields, and the high efficiency in all operational regions can be achieved for this machine.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

Jianxin Shen, Dan Shi, Canfei Wang, Peng Li, Kang Wang and Mengjia Jin

The purpose of this paper is to investigate a new cause of torque ripple in interior permanent magnet (IPM) alternating current (AC) motors, which is common but has hardly been…

Abstract

Purpose

The purpose of this paper is to investigate a new cause of torque ripple in interior permanent magnet (IPM) alternating current (AC) motors, which is common but has hardly been studied. The paper also proposes a new method to suppress the total torque ripple.

Design/methodology/approach

Besides the well-known cogging torque and mutual torque ripple, a new ripple which exists in the reluctance torque is found. It is verified with both analytical model and finite element analysis. Also, a novel method is proposed to reduce the reluctance torque ripple, with experimental validation.

Findings

It is usually said that the winding inductances of an IPM AC motor vary sinusoidally with the rotor position, thus, the d-axis and q-axis inductances are constant, whilst the reluctance torque is smooth. However, in most practical motors, the inductances vary irregularly, causing a significant ripple in the reluctance torque. Moreover, in machine design, it is always desirable to suppress the cogging torque as much as possible. However, in this paper, it is proved that the cogging torque can remain and be used to cancel the reluctance torque ripple.

Originality/value

Torque ripple in the IPM AC motors is usually reduced by suppressing the cogging torque and making both back electromotive forces and currents sinusoidal. However, this paper reveals the new cause of the torque ripple due to the irregular variation of winding inductances. Moreover, the paper gives a new method to cancel the reluctance torque ripple with the cogging torque.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Shun Cai, Meng-Jia Jin, He Hao and Jian-Xin Shen

The purpose of this paper is to comparatively study a synchronous reluctance machine (SynRM) and a permanent magnet assisted synchronous reluctance machine (PMASynRM) as…

Abstract

Purpose

The purpose of this paper is to comparatively study a synchronous reluctance machine (SynRM) and a permanent magnet assisted synchronous reluctance machine (PMASynRM) as alternatives of the interior permanent magnet synchronous machine (IPMSM), and to investigate the performance and conclude both advantages and disadvantages.

Design/methodology/approach

A unified mathematical model is established for the IPMSM, SynRM and PMASynRM. Then finite element method (FEM) is used to compare the electromagnetic performance. Permeability-frozen method is utilized to distinguish basic electromagnetic torque and reluctance torque.

Findings

The PMASynRM can improve the power factor of the SynRM, overcome the drawback of the IPMSM in the high-speed flux-weakening region and is more proper to operate over a wide speed region. The SynRM is mechanically robust for lacking of the permanent magnets, and the PMASynRM can keep similar rotor stress as the SynRM by optimizing the magnets. Assembly of the SynRM is the simplest, and the economic performance of the SynRM and PMASynRM could be much better than the IPMSM which even uses ferrite magnets.

Practical/implications

The SynRM can produce identical torque and efficiency compared with the IPMSM except the poor power factor. The poor power factor could be improved by adopting the PMASynRM, which is proved to be able to act as an alternative of the IPMSM for low-cost high-performance application.

Originality/value

This paper provides the theoretical model of the IPMSM, SynRM and PMASynRM in a unified format. The electromagnetic, mechanical and economic performances of the three kinds of synchronous motors are compared comprehensively. Then, both the advantages and disadvantages are summarized.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 78