Search results

1 – 10 of 200
Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

Jianxin Shen, Kang Wang, Dan Shi, Canfei Wang and Mengjia Jin

The purpose of this paper is to present the optimal design of a low-cost interior permanent magnet (IPM) alternating current (AC) motor. It examines the influence of the permanent

Abstract

Purpose

The purpose of this paper is to present the optimal design of a low-cost interior permanent magnet (IPM) alternating current (AC) motor. It examines the influence of the permanent magnet (PM) materials, and proposes a simple and practical method of optimizing the air-gap field to achieve sinusoidal back electromotive force (EMF), and to reduce the cogging torque.

Design/methodology/approach

IPM AC motors with different magnet materials and various topologies are comparatively studied. Finite element method (FEM) is used to predict the performances of these designs. Material costs and manufacture costs are both taken into account. Finally, an optimized design is prototyped and tested, validating the design considerations.

Findings

In an IPM AC motor, even if the rotor outer profile is round, the air-gap field distribution can be fined, while the cogging torque can be significantly reduced, by properly shaping the stator tooth tips. Nevertheless, this technique is usually applicable to motor configurations with concentrated windings, but not to those with distributed windings.

Originality/value

While using ferrite magnets for PM AC motors with a kW power, interior magnets are usually inserted in V-shaped slots, and the rotor outer profile is often shaped in order to enhance the air-gap field distribution. However, such a rotor configuration usually increases the manufacture costs, and also deteriorates the consistency of mass production. Therefore, a new motor configuration with a round rotor outer profile and shaped stator tooth tips is proposed. It can not only overcome the aforementioned problems, but also improve the motor performance.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 July 2008

M.P. Donsión

This paper aims to apply a two‐axis model for accurate representation of the characteristics of permanent magnet synchronous motors (PMSM) of the interior type.

Abstract

Purpose

This paper aims to apply a two‐axis model for accurate representation of the characteristics of permanent magnet synchronous motors (PMSM) of the interior type.

Design/methodology/approach

For a three‐phase PMSM, it uses a voltage source inverter with six power transistors with independent switching and PSIM software with Matlab for checking, by simulation, how some parameters influence the start process.

Findings

It was found that pulsating components generate the synchronizing torque.

Originality/value

The paper provides a model for accurate representation of the characteristics of permanent magnet motors.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

Jian‐Xin Shen, He Hao, Can‐Fei Wang and Meng‐Jia Jin

The aim of this paper is to present a new sensorless control strategy using a flux observer, which is particularly designed for taking into account the rotor saliency and winding…

Abstract

Purpose

The aim of this paper is to present a new sensorless control strategy using a flux observer, which is particularly designed for taking into account the rotor saliency and winding inductance variation in an interior permanent magnet synchronous motor (IPMSM).

Design/methodology/approach

In a PMSM, the magnets‐excited flux‐linkage, i.e. the rotor flux‐linkage, can be expressed as a vector. Its phase angle stands for the rotor position. Therefore, if this vector is estimated with an observer, the rotor position can be obtained without a position sensor, consequently, sensorless control can be realized. The main object of this paper is to establish and implement a model of rotor flux observer, specifically for IPMSM.

Findings

The flux observer model is built on the d‐q‐0 frame, using unequal values of the d‐axis inductance Ld and q‐axis inductance Lq to represent the IPMSM rotor saliency. Its digital implementation is proposed, whilst the sensorless control strategy is experimentally verified.

Research limitations/implications

Insignificant error exists in the estimated rotor position, probably due to the non‐sinusoidal variation of winding inductance. Further improvement of the observer model is preferable.

Originality/value

In previous works, the rotor flux observer is only applied to surface‐mounted permanent magnet synchronous motors (SPMSM) in which the winding inductance is constant. However, the proposed observer can deal with the rotor saliency and inductance variation in IPMSM, whilst its digital implementation is also new.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2011

Grzegorz Ombach

In the last few years, the understanding of environmental problems has grown. Car producers – original equipment manufacturers – are aiming to reduce fuel consumption and…

1107

Abstract

Purpose

In the last few years, the understanding of environmental problems has grown. Car producers – original equipment manufacturers – are aiming to reduce fuel consumption and pollution. In order to fulfil these aims, new technologies have been launched. Many hydraulics systems have been removed and replaced with electric ones, e.g. power steering, water and oil pump, etc. In this paper, an electromechanical subsystem used in an automotive application is analyzed. The subsystem is composed of interior permanent synchronous magnet motor and electronic control unit. The range of mechanical output power for studied system is up to 1 kW. The aim of this paper is to compare electromechanical systems working with different on‐board voltage levels in order to find the optimum balance between motors' and electronics' efficiency. This will help to decrease the total system's weight, the consequence of which will decrease fuel consumption and reduce CO2 emissions.

Design/methodology/approach

During the analysis, the reduced order modelling (ROM) techniques has been applied. First, with utilization of finite‐elemente‐methode the basic motor's parameter like: synchronous inductance and flux per pole as a function of the direct‐axis current and also the quadrature‐axis current are calculated. In the second step, these parameters are used in the system simulation. During this simulation, the maximum torque per ampere control strategy together with ROM techniques was used.

Findings

As a result, the performance of the system for different voltage levels has been obtained. Additionally, the important factors for an electromechanical system, such as maximum power density, sizing and cost of the total electromechanical system, have been compared.

Practical implications

The performed comparison shows that the cost optimized system should work with the higher voltage, where the electric motor size is reduced ca. 25 per cent. This result is also valid for different electromechanical systems in an automotive area, e.g. automated manual transmission, engine cooling and electric compressor.

Originality/value

It is the first paper, where electric power steering system design for different on‐board voltage levels has been systematically analyzed and compared. Results from this paper can be also applied to different electromechanical systems mounted in hybrid or electric cars.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Shun Cai, Meng-Jia Jin, He Hao and Jian-Xin Shen

The purpose of this paper is to comparatively study a synchronous reluctance machine (SynRM) and a permanent magnet assisted synchronous reluctance machine (PMASynRM) as…

Abstract

Purpose

The purpose of this paper is to comparatively study a synchronous reluctance machine (SynRM) and a permanent magnet assisted synchronous reluctance machine (PMASynRM) as alternatives of the interior permanent magnet synchronous machine (IPMSM), and to investigate the performance and conclude both advantages and disadvantages.

Design/methodology/approach

A unified mathematical model is established for the IPMSM, SynRM and PMASynRM. Then finite element method (FEM) is used to compare the electromagnetic performance. Permeability-frozen method is utilized to distinguish basic electromagnetic torque and reluctance torque.

Findings

The PMASynRM can improve the power factor of the SynRM, overcome the drawback of the IPMSM in the high-speed flux-weakening region and is more proper to operate over a wide speed region. The SynRM is mechanically robust for lacking of the permanent magnets, and the PMASynRM can keep similar rotor stress as the SynRM by optimizing the magnets. Assembly of the SynRM is the simplest, and the economic performance of the SynRM and PMASynRM could be much better than the IPMSM which even uses ferrite magnets.

Practical/implications

The SynRM can produce identical torque and efficiency compared with the IPMSM except the poor power factor. The poor power factor could be improved by adopting the PMASynRM, which is proved to be able to act as an alternative of the IPMSM for low-cost high-performance application.

Originality/value

This paper provides the theoretical model of the IPMSM, SynRM and PMASynRM in a unified format. The electromagnetic, mechanical and economic performances of the three kinds of synchronous motors are compared comprehensively. Then, both the advantages and disadvantages are summarized.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2010

Behrooz Majidi, Jafar Milimonfared and Kaveh Malekian

To optimize the performance of direct torque‐controlled interior permanent magnet synchronous motor drives, the purpose of this paper is to modify the constraints and strategies…

Abstract

Purpose

To optimize the performance of direct torque‐controlled interior permanent magnet synchronous motor drives, the purpose of this paper is to modify the constraints and strategies of such a control while accounting for magnetic saturation.

Design/methodology/approach

The machine model used to investigate the proposed method is the conventional two‐axis machine model, which is modified to include magnetic saturation in the quadrature axis. With the consideration of magnetic saturation, all optimal strategies, which correspond to the maximum torque per ampere and field weakening strategies, and motor‐inverter limitations are derived in T−|ψs| plane to apply in the direct torque control (DTC) method. Such strategies which take magnetic saturation into account and determine the optimal torque and flux commands are derived and implemented in DTC method.

Findings

Using the modified strategies ensures that the machine capacity is applied as much as possible. Simulation results emphasize the applicability and effectiveness of the proposed control process.

Research limitations/implications

In order to use the proposed method, it is necessary to define quadrature‐axis inductance as a function of quadrature‐axis current. Since, in this method, a simplified function is applied, it is not required to know exact magnetic behavior of motor and this simplified function can be easily obtained using finite element softwares.

Practical implications

Using the proposed method in practice results in better dynamic operation as well as maximal usage of the motor capacity.

Originality/value

This paper deals with consideration of magnetic saturation in DTC method which is not done in pervious works.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 July 2019

Roberto Eduardo Quintal-Palomo, Maciej Gwozdziewicz and Mateusz Dybkowski

The purpose of this paper is to obtain an accurate methodology for modelling and analysis of the permanent magnet synchronous generator connected to power electronic components.

Abstract

Purpose

The purpose of this paper is to obtain an accurate methodology for modelling and analysis of the permanent magnet synchronous generator connected to power electronic components.

Design/methodology/approach

This paper presents the methodology of the co-simulation of a permanent magnet synchronous generator. It combines Simulink, Maxwell and Simplorer software to demonstrate the electrical machine behaviour connected with the power electronics’ circuit. The finite element analysis performed on the designed machine exhibit a more accurate behaviour over simplified Simulink models. Results between both simulation and co-simulation are compared to measurements.

Findings

The co-simulation approach offers a more accurate depiction of the machine behaviour and its interaction with the non-linear circuits.

Research limitations/implications

This paper focuses on the interior permanent magnet type of PMSG and its interaction with a passive rectifier (nonlinear circuit).

Practical implications

The advanced capabilities of the co-simulation method allow to analyse more variations (geometry, materials, etc.), and its interaction with non-linear circuits, than previous simulation techniques.

Originality/value

The co-simulation as a tool for analysis and design of systems interconnected with unconventional and conventional electrical machines and prototypes, and the comparison of the obtained results with classical analysis and design methods, against measurements obtained from the prototype.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

Wojciech Chlebosz and Grzegorz Ombach

In order to reduce CO2 emissions of new cars many hydraulic and mechanical systems like e.g.: water pump, oil pump, power steering, clime compressor have been exchanged with pure…

Abstract

Purpose

In order to reduce CO2 emissions of new cars many hydraulic and mechanical systems like e.g.: water pump, oil pump, power steering, clime compressor have been exchanged with pure electromechanical systems, which are driven only on request. This helps to reduce fuel consumption. This trend requires of utilization of modern brushless electric motors, which are controlled from power electronic control unit – ECU. In today's car can be found between 30 to 150 electric motors. Many of them are still simple brush type with ferrite magnets. Also in this area, drift in the direction of brushless motors can bee seen, because of higher efficiency, longer lifetime, lower noise, better EMC and more controllable torque vs speed characteristic. There are different technological solutions, which can been used in the area of brushless motors in order to reduce size and cost of single component. One major factor of BLDC/AC motor is rear earth permanent magnet material used during production. A magnet material cost could be in the range from 30 percent (basis price 2010) up to 90 percent (basis price 2011) of total material motor cost, depends on actual rear earth material price level. In order to reduce magnet cost, the aim of this paper is to find the most robust motor design, which can be resistant against maximum temperature and phase current amplitude for the same magnet material properties, coercive force – Hcj. This behaviour is called demagnetization property.

Design/methodology/approach

Analysis was performed based on review of literature, own theoretical and practical research and experience in the area of electromechanical systems for automotive application. During motor analysis computer numerical simulation method, CAD and experiment were used.

Findings

As a result, comparison of different motors' topologies with different properties of magnet materials is presented. The worked out methodology shows very good correlation between simulations and measurements. This work can be used in order to reduce test effort and reduce cost of design.

Practical implications

The presented methodology reduces for new designs test effort and development cost and gives an implication of robust motor topology for demagnetization effects.

Originality/value

It is the first paper where demagnetization effects have been studied theoretically and in laboratory in order to find the most robust design, reduce magnet cost by reduction of dysprosium content and develop simulation procedure for analysis of demagnetizations behaviours of interior and surface permanent magnet.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 November 2016

Xiping Liu, Ya Li, Zhangqi Liu, Tao Ling and Zhenhua Luo

The purpose of this paper is to propose a permanent magnet-assisted synchronous reluctance machine (PMASynRM) using ferrite magnets with the same power density as rare-earth PM…

Abstract

Purpose

The purpose of this paper is to propose a permanent magnet-assisted synchronous reluctance machine (PMASynRM) using ferrite magnets with the same power density as rare-earth PM synchronous motors used in Toyota Prius 2010.

Design/methodology/approach

A novel rotor structure with rectangular PMs is discussed with respect to the demagnetization of ferrite magnets and mechanical strength. Some electromagnetic characteristics including torque, output power, loss and efficiency are calculated by 2D finite element analysis.

Findings

The results of the analysis show that a high power density and high efficiency for PMASynRM can be achieved using ferrite magnets.

Originality/value

This paper proposes a novel rotor structure of PMASynRM with low-cost ferrite magnets that achieves high power density as permanent machines with rare-earth PMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 200