Search results

1 – 10 of 26
Article
Publication date: 9 April 2024

Lu Wang, Jiahao Zheng, Jianrong Yao and Yuangao Chen

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although…

Abstract

Purpose

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although there are some models that can handle such problems well, there are still some shortcomings in some aspects. The purpose of this paper is to improve the accuracy of credit assessment models.

Design/methodology/approach

In this paper, three different stages are used to improve the classification performance of LSTM, so that financial institutions can more accurately identify borrowers at risk of default. The first approach is to use the K-Means-SMOTE algorithm to eliminate the imbalance within the class. In the second step, ResNet is used for feature extraction, and then two-layer LSTM is used for learning to strengthen the ability of neural networks to mine and utilize deep information. Finally, the model performance is improved by using the IDWPSO algorithm for optimization when debugging the neural network.

Findings

On two unbalanced datasets (category ratios of 700:1 and 3:1 respectively), the multi-stage improved model was compared with ten other models using accuracy, precision, specificity, recall, G-measure, F-measure and the nonparametric Wilcoxon test. It was demonstrated that the multi-stage improved model showed a more significant advantage in evaluating the imbalanced credit dataset.

Originality/value

In this paper, the parameters of the ResNet-LSTM hybrid neural network, which can fully mine and utilize the deep information, are tuned by an innovative intelligent optimization algorithm to strengthen the classification performance of the model.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 April 2024

Mahmoud Taban and Alireza Basohbat Novinzadeh

One of the challenges encountered in the design of guided projectiles is their prohibitive cost. To diminish it, an appropriate avenue many researchers have explored is the use of…

Abstract

Purpose

One of the challenges encountered in the design of guided projectiles is their prohibitive cost. To diminish it, an appropriate avenue many researchers have explored is the use of the non-actuator method for guiding the projectile to the target. In this method, biologically inspired by the flying concept of the single-winged seed, for instance, that of maple and ash trees, the projectile undergoes a helical motion to scan the region and meet the target in the descent phase. Indeed, the projectile is a decelerator device based on the autorotation flight while it attempts to resemble the seed’s motion using two wings of different spans. There exists a wealth of studies on the stability of the decelerators (e.g. the mono-wing, samara and pararotor), but all of them have assumed the body (exclusive of the wing) to be symmetric and paid no particular attention to the scanning quality of the region. In practice, however, the non-actuator-guided projectiles are asymmetric owing to the presence of detection sensors. This paper aims to present an analytical solution for stability analysis of asymmetric decelerators and apprise the effects of design parameters to improve the scanning quality.

Design/methodology/approach

The approach of this study is to develop a theoretical model consisting of Euler equations and apply a set of non-dimensionalized equations to reduce the number of involved parameters. The obtained governing equations are readily applicable to other decelerator devices, such as the mono-wing, samara and pararotor.

Findings

The results show that the stability of the body can be preserved under certain conditions. Moreover, pertinent conclusions are outlined on the sensitivity of flight behavior to the variation of design parameters.

Originality/value

The analytical solution and sensitivity analysis presented here can efficiently reduce the design cost of the asymmetric decelerator.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 March 2024

Elisa Gonzalez Santacruz, David Romero, Julieta Noguez and Thorsten Wuest

This research paper aims to analyze the scientific and grey literature on Quality 4.0 and zero-defect manufacturing (ZDM) frameworks to develop an integrated quality 4.0 framework…

Abstract

Purpose

This research paper aims to analyze the scientific and grey literature on Quality 4.0 and zero-defect manufacturing (ZDM) frameworks to develop an integrated quality 4.0 framework (IQ4.0F) for quality improvement (QI) based on Six Sigma and machine learning (ML) techniques towards ZDM. The IQ4.0F aims to contribute to the advancement of defect prediction approaches in diverse manufacturing processes. Furthermore, the work enables a comprehensive analysis of process variables influencing product quality with emphasis on the use of supervised and unsupervised ML techniques in Six Sigma’s DMAIC (Define, Measure, Analyze, Improve and Control) cycle stage of “Analyze.”

Design/methodology/approach

The research methodology employed a systematic literature review (SLR) based on PRISMA guidelines to develop the integrated framework, followed by a real industrial case study set in the automotive industry to fulfill the objectives of verifying and validating the proposed IQ4.0F with primary data.

Findings

This research work demonstrates the value of a “stepwise framework” to facilitate a shift from conventional quality management systems (QMSs) to QMSs 4.0. It uses the IDEF0 modeling methodology and Six Sigma’s DMAIC cycle to structure the steps to be followed to adopt the Quality 4.0 paradigm for QI. It also proves the worth of integrating Six Sigma and ML techniques into the “Analyze” stage of the DMAIC cycle for improving defect prediction in manufacturing processes and supporting problem-solving activities for quality managers.

Originality/value

This research paper introduces a first-of-its-kind Quality 4.0 framework – the IQ4.0F. Each step of the IQ4.0F was verified and validated in an original industrial case study set in the automotive industry. It is the first Quality 4.0 framework, according to the SLR conducted, to utilize the principal component analysis technique as a substitute for “Screening Design” in the Design of Experiments phase and K-means clustering technique for multivariable analysis, identifying process parameters that significantly impact product quality. The proposed IQ4.0F not only empowers decision-makers with the knowledge to launch a Quality 4.0 initiative but also provides quality managers with a systematic problem-solving methodology for quality improvement.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 29 March 2024

Jianping Zhang, Leilei Wang and Guodong Wang

With the rapid advancement in the automotive industry, the friction coefficient (FC), wear rate (WR) and weight loss (WL) have emerged as crucial parameters to measure the…

33

Abstract

Purpose

With the rapid advancement in the automotive industry, the friction coefficient (FC), wear rate (WR) and weight loss (WL) have emerged as crucial parameters to measure the performance of automotive braking systems, so the FC, WR and WL of friction material are predicted and analyzed in this work, with an aim of achieving accurate prediction of friction material properties.

Design/methodology/approach

Genetic algorithm support vector machine (GA-SVM) model is obtained by applying GA to optimize the SVM in this work, thus establishing a prediction model for friction material properties and achieving the predictive and comparative analysis of friction material properties. The process parameters are analyzed by using response surface methodology (RSM) and GA-RSM to determine them for optimal friction performance.

Findings

The results indicate that the GA-SVM prediction model has the smallest error for FC, WR and WL, showing that it owns excellent prediction accuracy. The predicted values obtained by response surface analysis are closed to those of GA-SVM model, providing further evidence of the validity and the rationality of the established prediction model.

Originality/value

The relevant results can serve as a valuable theoretical foundation for the preparation of friction material in engineering practice.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 4 April 2024

Weihua Zhang, Yuanchen Zeng, Dongli Song and Zhiwei Wang

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to…

Abstract

Purpose

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice. The key principles and approaches will be proposed, and their applications to high-speed trains in China will be presented.

Design/methodology/approach

First, the structural integrity and dynamical integrity of high-speed trains are defined, and their relationship is introduced. Then, the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided. Finally, the principles and approaches for assessing the dynamical integrity of high-speed trains are presented and a novel operational assessment method is further presented.

Findings

Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system. For assessing the structural integrity of structural components, an open-loop analysis considering both normal and abnormal vehicle conditions is needed. For assessing the structural integrity of dynamical components, a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed. The analysis of vehicle system dynamics should follow the principles of complete objects, conditions and indices. Numerical, experimental and operational approaches should be combined to achieve effective assessments.

Originality/value

The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects, better lifespan management of train components and better maintenance decision-making for high-speed trains.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 4 March 2024

Francesco Aiello, Paola Cardamone, Lidia Mannarino and Valeria Pupo

The purpose of this study is to investigate whether and how inter-firm cooperation and firm age moderate the relationship between family ownership and productivity.

Abstract

Purpose

The purpose of this study is to investigate whether and how inter-firm cooperation and firm age moderate the relationship between family ownership and productivity.

Design/methodology/approach

We first estimate the total factor productivity (TFP) of a large sample of Italian firms observed over the period 2010–2018 and then apply a Poisson random effects model.

Findings

TFP is, on average, higher for non-family firms (non-FFs) than for FF. Furthermore, inter-organizational cooperation and firm age mitigate the negative effect of family ownership. In detail, it is found that belonging to a network acts as a moderator in different ways according to firm age. Indeed, young FFs underperform non-FF peers, although the TFP gap decreases with age. In contrast, the benefits of a formal network are high for older FFs, suggesting that an age-related learning process is at work.

Practical implications

The study provides evidence that FFs can outperform non-FFs when they move away from Socio-Emotional Wealth-centered reference points and exploit knowledge flows arising from high levels of social capital. In the case of mature FFs, networking is a driver of TFP, allowing them to acquire external resources. Since FFs often do not have sufficient in-house knowledge and resources, they must be aware of the value of business cooperation. While preserving the familiar identity of small companies, networks grant FFs the competitive and scale advantages of being large.

Originality/value

Despite the wide but ambiguous body of research on the performance gap between FFs and non-FFs, little is known about the role of FFs’ heterogeneity. This study has proven successful in detecting age as a factor in heterogeneity, specifically to explain the network effect on the link between ownership and TFP. Based on a representative sample, the study provides a solid framework for FFs, policymakers and academic research on family-owned companies.

Details

Journal of Economic Studies, vol. 51 no. 9
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 15 February 2024

Quanwei Yin, Liang Zhang and Xudong Zhao

This paper aims to study the issues of output reachable set estimation for the linear singular Markovian jump systems (SMJSs) with time-varying delay based on a proportional plus…

Abstract

Purpose

This paper aims to study the issues of output reachable set estimation for the linear singular Markovian jump systems (SMJSs) with time-varying delay based on a proportional plus derivative (PD) bumpless transfer (BT) output feedback (OF) control scheme.

Design/methodology/approach

To begin with, a sufficient criterion is given in the form of a linear matrix inequality based on the Lyapunov stability theory. Then, a PD-BT OF controller is designed to keep all the output signs of the system are maintain within a predetermined ellipsoid. Finally, numerical and practical examples are used to demonstrate the efficiency of the approach.

Findings

Based on PD control and BT control method, an OF control strategy for the linear SMJSs with time-varying delay is proposed.

Originality/value

The output reachable set synthesis of linear SMJSs with time-varying delay can be solved by using the proposed approach. Besides, to obtain more general results, the restrictive assumptions of some parameters are removed. Furthermore, a sufficiently small ellipsoid can be obtained by the design scheme adopted in this paper, which reduces the conservatism of the existing results.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 26 April 2024

William Henry Collinge

The paper aims to apply social practice theory to clarify the process of innovation design and delivery from one successful digital innovation: the building information modelling…

Abstract

Purpose

The paper aims to apply social practice theory to clarify the process of innovation design and delivery from one successful digital innovation: the building information modelling (BIM) risk library. The paper clarifies the practices surrounding construction innovation and provides a schema useful for practitioners and technology designers through a social practice analysis.

Design/methodology/approach

The paper applies Schatzki's “organisation of practice” concepts to a construction project innovation to clarify how the practice of innovation revolves around understandings, rules and teleoaffectivities (emotive behaviours). Sources for the study include notes from meetings, workshops with experts and the shared artefacts of innovation.

Findings

The practice of innovation design and delivery are clarified through a social practice analysis: a distinct “field of practice” and a “schema” of generalisable prescriptions and preferences for innovation delivery being presented.

Practical implications

The paper informs the practice and process of innovation design and delivery; the insights clarify how collective understandings and rules of use evolve over time, becoming formalised into contracts, agreements and workplans. Practically, processes whereby innovation “sayings” evolve into innovation “doings” are clarified: a schema detailing prescriptions and preferences of practitioners and developers being presented.

Originality/value

The social practice analysis of one successful construction innovation is an original contribution to the body of knowledge, adding a level of detail regarding innovation design and delivery often missing from reported research.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 26