Search results

1 – 10 of over 16000
Open Access
Article
Publication date: 4 April 2024

Weihua Zhang, Yuanchen Zeng, Dongli Song and Zhiwei Wang

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to…

Abstract

Purpose

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice. The key principles and approaches will be proposed, and their applications to high-speed trains in China will be presented.

Design/methodology/approach

First, the structural integrity and dynamical integrity of high-speed trains are defined, and their relationship is introduced. Then, the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided. Finally, the principles and approaches for assessing the dynamical integrity of high-speed trains are presented and a novel operational assessment method is further presented.

Findings

Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system. For assessing the structural integrity of structural components, an open-loop analysis considering both normal and abnormal vehicle conditions is needed. For assessing the structural integrity of dynamical components, a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed. The analysis of vehicle system dynamics should follow the principles of complete objects, conditions and indices. Numerical, experimental and operational approaches should be combined to achieve effective assessments.

Originality/value

The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects, better lifespan management of train components and better maintenance decision-making for high-speed trains.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 19 January 2015

Gang Chen and Wei-gong Zhang

The purpose of this paper is to present a prototype simulation system for driving performance of an electromagnetic unmanned robot applied to automotive test (URAT) to solve that…

Abstract

Purpose

The purpose of this paper is to present a prototype simulation system for driving performance of an electromagnetic unmanned robot applied to automotive test (URAT) to solve that it is difficult and dangerous to online debug control program and to quickly obtain test vehicle dynamic performance.

Design/methodology/approach

The driving performance of the electromagnetic URAT can be evaluated by the prototype simulation system. The system can simulate various driving conditions of test vehicles. An improved vehicle longitudinal dynamics model matching to the electromagnetic URAT is established. The proposed model has good real-time, and it is easy to implement. The displacement of throttle mechanical leg, brake mechanical leg, clutch mechanical leg and shift mechanical arm is used for the system input. Test vehicle speed and engine speed are used for the system output, and they are obtained by the computation of the established vehicle longitudinal dynamics model.

Findings

Driving conditions simulation test and vehicle emission test are performed using a Ford Focus car. Simulation and experiment results show that the proposed prototype simulation system in the paper can simulate the driving conditions of actual vehicles, and the performance that electromagnetic URAT drives an actual vehicle is evaluated by the simulation system.

Research limitations/implications

Future research will focus on improving the real time of the proposed simulation system.

Practical implications

The autonomous driving performance of electromagnetic URAT can be evaluated by the proposed prototype simulation system.

Originality/value

A prototype simulation system for driving performance of an electromagnetic URAT based on an improved vehicle longitudinal dynamics model is proposed in this paper, so that it can solve the difficulty and danger of online debugging control program, quickly obtaining the test vehicle performance.

Details

Industrial Robot: An International Journal, vol. 42 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 31 October 2023

Zhizhong Guo, Fei Liu, Yuze Shang, Zhe Li and Ping Qin

This research aims to present a novel cooperative control architecture designed specifically for roads with variations in height and curvature. The primary objective is to enhance…

Abstract

Purpose

This research aims to present a novel cooperative control architecture designed specifically for roads with variations in height and curvature. The primary objective is to enhance the longitudinal and lateral tracking accuracy of the vehicle.

Design/methodology/approach

In addressing the challenges posed by time-varying road information and vehicle dynamics parameters, a combination of model predictive control (MPC) and active disturbance rejection control (ADRC) is employed in this study. A coupled controller based on the authors’ model was developed by utilizing the capabilities of MPC and ADRC. Emphasis is placed on the ramifications of road undulations and changes in curvature concerning control effectiveness. Recognizing these factors as disturbances, measures are taken to offset their influences within the system. Load transfer due to variations in road parameters has been considered and integrated into the design of the authors’ synergistic architecture.

Findings

The framework's efficacy is validated through hardware-in-the-loop simulation. Experimental results show that the integrated controller is more robust than conventional MPC and PID controllers. Consequently, the integrated controller improves the vehicle's driving stability and safety.

Originality/value

The proposed coupled control strategy notably enhances vehicle stability and reduces slip concerns. A tailored model is introduced integrating a control strategy based on MPC and ADRC which takes into account vertical and longitudinal force variations and allowing it to effectively cope with complex scenarios and multifaceted constraints problems.

Book part
Publication date: 13 August 2020

Anna Pernestål, Albin Engholm, Ida Kristoffersson and Johanna Jussila Hammes

Automated vehicles are likely to have significant impacts on the transport system such as increased road capacity, more productive/enjoyable time spent travelling in a car, and…

Abstract

Automated vehicles are likely to have significant impacts on the transport system such as increased road capacity, more productive/enjoyable time spent travelling in a car, and increased vehicle kilometres travelled. However, there is a great risk that automated driving may negatively impact the environment if adequate policies are not put in place. This chapter examines the effects of driverless vehicles and the types of policies required to attain sustainable implementation of the technology. To understand the effects on a systemic level, and to understand the needs and impacts of policies, the dynamics must be understood. Therefore, a causal loop diagram (CLD) is developed and analysed. One important insight is that the effects of driverless vehicles are mainly on the vehicular level (e.g., the reduced number of accidents per vehicle). These effects can be cancelled out on a systemic level (e.g., due to increased vehicle-kilometre travelled (VKT) that increases total number of accidents). The marginal costs of road transport are central to both freight and passenger transport. Automation will reduce marginal costs and shift the equilibrium in the transport system towards a state with higher VKT. This will lead to greater energy consumption and higher emissions. To attain sustainability goals, there might be a need to balance this reduction of marginal costs by using policy instruments. In the work, CLDs is experienced to be a useful tool to support the collaboration between experts from different fields in the dialogue about policies.

Details

Shaping Smart Mobility Futures: Governance and Policy Instruments in times of Sustainability Transitions
Type: Book
ISBN: 978-1-83982-651-1

Keywords

Article
Publication date: 13 November 2017

Anna Corinna Cagliano, Antonio Carlin, Giulio Mangano and Carlo Rafele

The purpose of this paper is to investigate the diffusion dynamics of electric and hybrid commercial vans and its enabling factors in the city logistics (CL) contexts. The case of…

1293

Abstract

Purpose

The purpose of this paper is to investigate the diffusion dynamics of electric and hybrid commercial vans and its enabling factors in the city logistics (CL) contexts. The case of parcel delivery in Torino, Italy, is considered. Attention is paid to the influence on the choice of low impact vehicles of not only public strategies but also operational aspects characterizing urban freight distribution systems.

Design/methodology/approach

A System Dynamics model based on the Bass diffusion theory computes the number of adopters of low-emission vehicles together with the quantity of vans required and the associated economic savings. The model includes variables about freight demand, delivery frequency, van carrying capacity, routes, stops, distances traveled, and vehicle charging stations. A sensitivity analysis has been completed to identify the main diffusion levers. The focus is on advertising and other drivers, such as public contributions, taxes traditional polluting vehicles are subjected to, as well as on routing optimization strategies.

Findings

Advertising programs, green image, and word-of-mouth drive market saturation, although in a long time period. In fact, low-impact vehicles do not offer any economic advantage over traditional ones requiring higher investment and operating costs. Public incentives to purchase both green vehicles and charging stations, together with carbon taxes and a congestion charge affecting polluting vehicles, are able to shorten the adoption time. In particular, public intervention reveals to be effective only when it unfolds through a number of measures that both facilitate the use of environmentally friendly vehicles and discourage the adoption of traditional commercial vans. Route optimization also hastens the complete market saturation.

Research limitations/implications

This work fosters research about the mutual relationships between the diffusion of low-emission commercial vehicles and the operational and contextual CL factors. It provides a structured approach for investigating the feasibility of innovative good vehicles that might be part of assessments of CL measures and requirements. Finally, the model supports studies about the cooperation among stakeholders to identify effective commercial vehicle fleets.

Practical implications

This study fosters collaboration among CL players by providing a roadmap to identify the key factors for the diffusion of environmentally friendly freight vehicles. It also enables freight carriers to assess the operational and economic feasibility of adopting low-impact vehicles. Finally, it might assist public authorities in capturing the effects of new urban transportation policies prior to their implementation.

Originality/value

Most of the current CL literature defines policies and analyzes their effects. Also, there are several contributions on the diffusion of low emission cars. The present study is one of the first works on the diffusion of low-impact commercial vehicles in urban areas by considering the associated key operational factors. A further value is that the proposed model combines operational variables with economic and environmental issues.

Details

The International Journal of Logistics Management, vol. 28 no. 4
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 13 October 2021

Liang Su, Zhenpo Wang and Chao Chen

The purpose of this study is to propose a torque vectoring control system for improving the handling stability of distributed drive electric buses under complicated driving…

Abstract

Purpose

The purpose of this study is to propose a torque vectoring control system for improving the handling stability of distributed drive electric buses under complicated driving conditions. Energy crisis and environment pollution are two key pressing issues faced by mankind. Pure electric buses are recognized as the effective method to solve the problems. Distributed drive electric buses (DDEBs) as an emerging mode of pure electric buses are attracting intense research interests around the world. Compared with the central driven electric buses, DDEB is able to control the driving and braking torque of each wheel individually and accurately to significantly enhance the handling stability. Therefore, the torque vectoring control (TVC) system is proposed to allocate the driving torque among four wheels reasonably to improve the handling stability of DDEBs.

Design/methodology/approach

The proposed TVC system is designed based on hierarchical control. The upper layer is direct yaw moment controller based on feedforward and feedback control. The feedforward control algorithm is designed to calculate the desired steady-state yaw moment based on the steering wheel angle and the longitudinal velocity. The feedback control is anti-windup sliding mode control algorithm, which takes the errors between actual and reference yaw rate as the control variables. The lower layer is torque allocation controller, including economical torque allocation control algorithm and optimal torque allocation control algorithm.

Findings

The steady static circular test has been carried out to demonstrate the effectiveness and control effort of the proposed TVC system. Compared with the field experiment results of tested bus with TVC system and without TVC system, the slip angle of tested bus with TVC system is much less than without TVC. And the actual yaw rate of tested bus with TVC system is able to track the reference yaw rate completely. The experiment results demonstrate that the TVC system has a remarkable performance in the real practice and improve the handling stability effectively.

Originality/value

In view of the large load transfer, the strong coupling characteristics of tire , the suspension and the steering system during coach corning, the vehicle reference steering characteristics is defined considering vehicle nonlinear characteristics and the feedforward term of torque vectoring control at different steering angles and speeds is designed. Meanwhile, in order to improve the robustness of controller, an anti-integral saturation sliding mode variable structure control algorithm is proposed as the feedback term of torque vectoring control.

Article
Publication date: 8 March 2011

Khalil Alipour and S. Ali A. Moosavian

A suspended wheeled mobile robot (SWMR) that consists of one or more manipulators can be exploited in various environmental conditions such as uneven surfaces. The purpose of this…

Abstract

Purpose

A suspended wheeled mobile robot (SWMR) that consists of one or more manipulators can be exploited in various environmental conditions such as uneven surfaces. The purpose of this paper is to discuss the requirements for stable motion planning of such robotic systems to perform heavy object manipulation tasks.

Design/methodology/approach

First, a systematic procedure for dynamics modelling of such complicated systems for planar motion is presented and verified using ADAMS simulation software. Next, based on the new dynamic moment‐height stability (MHS) measure, the stability of such systems will be investigated using the obtained dynamics. To this end, introducing the concept of a virtual frame, the obtained model of SWMR has been employed for investigating the effect of the base suspension characteristics as well as terrain roughness on the stability of the system. Next, the stability evaluation of the system is investigated after toppling down which has been rarely addressed in the literature. In addition, using the aforementioned model, the effect of stiffness is examined after instability.

Findings

First, a systematic procedure for dynamics modelling of such complicated systems for planar motion is presented and verified using ADAMS simulation software. Next, based on the new dynamic MHS measure, the stability of such systems will be investigated using the obtained dynamics. To this end, introducing the concept of a virtual frame, the obtained model of SWMR has been employed for investigating the effect of the base suspension characteristics as well as terrain roughness on the stability of the system. Next, the stability evaluation of the system is investigated after toppling down which has been rarely addressed in the literature. In addition, using the aforementioned model, the effect of stiffness is examined after instability.

Originality/value

A general procedure for dynamics modelling of SWMRs is presented. To verify the obtained dynamics model, another model for the considered system has been developed by ADAMS software. Next, using the obtained dynamics, the postural stability of such systems is investigated, based on the new postural MHS measure extended for SWMRs. The obtained simulation results show that by decreasing the stiffness coefficients of suspension subsystem the stability of the system weakens.

Details

Industrial Robot: An International Journal, vol. 38 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 January 2021

Navya Thirumaleshwar Hegde, V. I. George, C. Gurudas Nayak and Aldrin Claytus Vaz

This paper aims to provide a mathematical modeling and design of H-infinity controller for an autonomous vertical take-off and landing (VTOL) Quad Tiltrotor hybrid unmanned aerial…

Abstract

Purpose

This paper aims to provide a mathematical modeling and design of H-infinity controller for an autonomous vertical take-off and landing (VTOL) Quad Tiltrotor hybrid unmanned aerial vehicles (UAVs). The variation in the aerodynamics and model dynamics of these aerial vehicles due to its tilting rotors are the key issues and challenges, which attracts the attention of many researchers. They carry parametric uncertainties (such as non-linear friction force, backlash, etc.), which drives the designed controller based on the nominal model to instability or performance degradation. The controller needs to take these factors into consideration and still give good stability and performance. Hence, a robust H-infinity controller is proposed that can handle these uncertainties.

Design/methodology/approach

A unique VTOL Quad Tiltrotor hybrid UAV, which operates in three flight modes, is mathematically modeled using Newton–Euler equations of motion. The contribution of the model is its ability to combine high-speed level flight, VTOL and transition between these two phases. The transition involves the tilting of the proprotors from 90° to 0° and vice-versa in 15° intervals. A robust H-infinity control strategy is proposed, evaluated and analyzed through simulation to control the flight dynamics for different modes of operation.

Findings

The main contribution of this research is the mathematical modeling of three flight modes (vertical takeoff–forward, transition–cruise-back, transition-vertical landing) of operation by controlling the revolutions per minute and tilt angles, which are independent of each other. An autonomous flight control system using a robust H-infinity controller to stabilize the mode of transition is designed for the Quad Tiltrotor UAV in the presence of uncertainties, noise and disturbances using MATLAB/SIMULINK. This paper focused on improving the disturbance rejection properties of the proposed UAV by designing a robust H-infinity controller for position and orientation trajectory regulation in the presence of uncertainty. The simulation results show that the Tiltrotor achieves transition successfully with disturbances, noise and uncertainties being present.

Originality/value

A novel VTOL Quad Tiltrotor UAV mathematical model is developed with a special tilting rotor mechanism, which combines both aircraft and helicopter flight modes with the transition taking place in between phases using robust H-infinity controller for attitude, altitude and trajectory regulation in the presence of uncertainty.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 2 March 2023

AiHua Zhu, Shang Yang, Jianwei Yang, Dongping Long and Xin Li

Metro wheels running on different lines can undergo wear at different positions. This paper aims to investigate the effects of wheel wear at two typical positions, i.e. wheel…

74

Abstract

Purpose

Metro wheels running on different lines can undergo wear at different positions. This paper aims to investigate the effects of wheel wear at two typical positions, i.e. wheel flange and tread, on the dynamic performance of metro vehicles and analyzes the differences, with an aim of providing theoretical support on wheel reprofiling for different metro lines.

Design/methodology/approach

Wheel profile data were measured on two actual metro lines, denoted A and B. It was observed that wheel wear on Lines A and B was concentrated on flanges and treads, respectively. A metro vehicle dynamics model was built using multibody dynamics software SIMPACK. Then it was applied to analyze the differences in effects of wheel wear at different positions on vehicle dynamic performance (VDP) for various speeds (50, 60 and 70 km/h) and line conditions (straight line, R1000m, R600m and R300m curves). Critical speed and vibration acceleration were used as indicators of VDP during linear motion (on straight track), while VDP during curvilinear motion (on curved track) was evaluated in terms of wheel/rail lateral force, wheel/rail vertical force, derailment coefficient and wheel unloading rate.

Findings

First, compared to wheel profile with tread wear, wheel profile with flange wear showed better performance during linear motion. When the distance traveled reached 8 × 104 and 14 × 104 km, the vehicle’s critical speed was 12.2 and 21.6% higher, respectively. The corresponding vertical and lateral vibration accelerations were 59.7 and 74.8% lower. Second, compared to wheel profile with flange wear, that with tread wear showed better performance during curvilinear motion, with smaller wheel/rail lateral force, derailment coefficient and wheel unloading rate. When the vehicle speed was 50, 60 and 70 km/h, the maximum difference in the three indicators between the two wheel profiles was 40.2, 44.7 and 23.1%, respectively. For R1000m, R600m and R300m curves, the corresponding maximum difference was 45.7, 69.0 and 44.4%, respectively.

Practical implications

The results of the study can provide a guidance and theoretical support on wheel reprofiling for different metro lines. On lines with large proportions of curved sections, metro vehicles are more prone to wheel flange wear and have poorer dynamic performance during curvilinear motion. Therefore, more attention should be paid to flange lubrication and maintenance for such lines. On lines with higher proportions of straight sections, metro vehicles are more prone to tread wear and have poorer performance on straight sections. So, tread maintenance and service requires more attention for such lines.

Originality/value

Existing research has focused primarily on the effects of wheel wear on VDP, but fails to consider the differences in the effects of wheel wear at different positions on VDP. In actual metro operation, the position of wheel wear can vary significantly between lines. Based on measured positions of wheel wear, this paper examines the differences in the effects of wheel wear at two typical positions, i.e. tread and flange, on VDP in detail.

Details

Industrial Lubrication and Tribology, vol. 75 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 25 December 2023

James Kanyepe and Nyarai Kasambuwa

The purpose of this study is to investigate the influence of institutional dynamics on road accidents and whether this relationship is moderated by information and communication…

Abstract

Purpose

The purpose of this study is to investigate the influence of institutional dynamics on road accidents and whether this relationship is moderated by information and communication technology (ICT).

Design/methodology/approach

The study adopted a quantitative approach with 133 respondents. Research hypotheses were tested in AMOS version 21. In addition, moderated regression analysis was used to test the moderating role of ICT on the relationship between institutional dynamics and road accidents.

Findings

The results show that vehicle maintenance, policy enforcement, safety culture, driver training and driver management positively influence road accidents. Moreover, the study established that ICT moderates the relationship between institutional dynamics and road accidents.

Practical implications

The results of this study serve as a practical guideline for policymakers in the road haulage sector. Managers may gain insights on how to design effective interventions to reduce road accidents.

Originality/value

This research contributes to the existing body of knowledge by exploring previously unexplored moderating paths in the relationship between institutional dynamics and road accidents. By highlighting the moderating role of ICT, the study sheds new light on the institutional dynamics that influence road accidents in the context of road haulage companies.

Details

Journal of Humanities and Applied Social Sciences, vol. 6 no. 1
Type: Research Article
ISSN: 2632-279X

Keywords

1 – 10 of over 16000