Search results

1 – 10 of over 6000
To view the access options for this content please click here

Abstract

Details

Machine Learning and Artificial Intelligence in Marketing and Sales
Type: Book
ISBN: 978-1-80043-881-1

To view the access options for this content please click here
Article
Publication date: 17 October 2008

Thiago Turchetti Maia, Antônio Pádua Braga and André F. de Carvalho

To create new hybrid algorithms that combine boosting and support vector machines to outperform other known algorithms in selected contexts of binary classification problems.

Abstract

Purpose

To create new hybrid algorithms that combine boosting and support vector machines to outperform other known algorithms in selected contexts of binary classification problems.

Design/methodology/approach

Support vector machines (SVM) are known in the literature to be one of the most efficient learning models for tackling classification problems. Boosting algorithms rely on other classification algorithms to produce different weak hypotheses which are later combined into a single strong hypothesis. In this work the authors combine boosting with support vector machines, namely the AdaBoost.M1 and sequential minimal optimization (SMO) algorithms, to create new hybrid algorithms that outperform standard SVMs in selected contexts. This is achieved by integration with different degrees of coupling, where the four algorithms proposed range from simple black‐box integration to modifications and mergers between AdaBoost.M1 and SMO components.

Findings

The results show that the proposed algorithms exhibited better performance for most problems experimented. It is possible to identify trends of behavior bound to specific properties of the problems solved, where one may hence apply the proposed algorithms in situations where it is known to succeed.

Research limitations/implications

New strategies for combining boosting and SVMs may be further developed using the principles introduced in this paper, possibly resulting in other algorithms with yet superior performance.

Practical implications

The hybrid algorithms proposed in this paper may be used in classification problems with properties that they are known to handle well, thus possibly offering better results than other known algorithms in the literature.

Originality/value

This paper introduces the concept of merging boosting and SVM training algorithms to obtain hybrid solutions with better performance than standard SVMs.

Details

Kybernetes, vol. 37 no. 9/10
Type: Research Article
ISSN: 0368-492X

Keywords

To view the access options for this content please click here
Article
Publication date: 28 March 2008

József Valyon and Gábor Horváth

The purpose of this paper is to present extended least squares support vector machines (LS‐SVM) where data selection methods are used to get sparse LS‐SVM solution, and to…

Abstract

Purpose

The purpose of this paper is to present extended least squares support vector machines (LS‐SVM) where data selection methods are used to get sparse LS‐SVM solution, and to overview and compare the most important data selection approaches.

Design/methodology/approach

The selection methods are compared based on their theoretical background and using extensive simulations.

Findings

The paper shows that partial reduction is an efficient way of getting a reduced complexity sparse LS‐SVM solution, while partial reduction exploits full knowledge contained in the whole training data set. It also shows that the reduction technique based on reduced row echelon form (RREF) of the kernel matrix is superior when compared to other data selection approaches.

Research limitations/implications

Data selection for getting a sparse LS‐SVM solution can be done in the different representations of the training data: in the input space, in the intermediate feature space, and in the kernel space. Selection in the kernel space can be obtained by finding an approximate basis of the kernel matrix.

Practical implications

The RREF‐based method is a data selection approach with a favorable property: there is a trade‐off tolerance parameter that can be used for balancing complexity and accuracy.

Originality/value

The paper gives contributions to the construction of high‐performance and moderate complexity LS‐SVMs.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 1 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Content available
Article
Publication date: 9 June 2021

Jin Gi Kim, Hyun-Tak Lee and Bong-Gyu Jang

This paper examines whether the successful bid rate of the OnBid public auction, published by Korea Asset Management Corporation, can identify and forecast the Korea…

Abstract

Purpose

This paper examines whether the successful bid rate of the OnBid public auction, published by Korea Asset Management Corporation, can identify and forecast the Korea business-cycle expansion and contraction regimes characterized by the OECD reference turning points. We use logistic regression and support vector machine in performing the OECD regime classification and predicting three-month-ahead regime. We find that the OnBid auction rate conveys important information for detecting the coincident and future regimes because this information might be closely related to deleveraging regarding default on debt obligations. This finding suggests that corporate managers and investors could use the auction information to gauge the regime position in their decision-making. This research has an academic significance that reveals the relationship between the auction market and the business-cycle regimes.

Details

Journal of Derivatives and Quantitative Studies: 선물연구, vol. 29 no. 2
Type: Research Article
ISSN: 1229-988X

Keywords

Content available
Article
Publication date: 28 July 2020

Harleen Kaur and Vinita Kumari

Diabetes is a major metabolic disorder which can affect entire body system adversely. Undiagnosed diabetes can increase the risk of cardiac stroke, diabetic nephropathy…

Abstract

Diabetes is a major metabolic disorder which can affect entire body system adversely. Undiagnosed diabetes can increase the risk of cardiac stroke, diabetic nephropathy and other disorders. All over the world millions of people are affected by this disease. Early detection of diabetes is very important to maintain a healthy life. This disease is a reason of global concern as the cases of diabetes are rising rapidly. Machine learning (ML) is a computational method for automatic learning from experience and improves the performance to make more accurate predictions. In the current research we have utilized machine learning technique in Pima Indian diabetes dataset to develop trends and detect patterns with risk factors using R data manipulation tool. To classify the patients into diabetic and non-diabetic we have developed and analyzed five different predictive models using R data manipulation tool. For this purpose we used supervised machine learning algorithms namely linear kernel support vector machine (SVM-linear), radial basis function (RBF) kernel support vector machine, k-nearest neighbour (k-NN), artificial neural network (ANN) and multifactor dimensionality reduction (MDR).

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Content available
Article
Publication date: 3 August 2020

Djordje Cica, Branislav Sredanovic, Sasa Tesic and Davorin Kramar

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects…

Abstract

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with cutting fluids, the machining industries are continuously developing technologies and systems for cooling/lubricating of the cutting zone while maintaining machining efficiency. In the present study, three regression based machine learning techniques, namely, polynomial regression (PR), support vector regression (SVR) and Gaussian process regression (GPR) were developed to predict machining force, cutting power and cutting pressure in the turning of AISI 1045. In the development of predictive models, machining parameters of cutting speed, depth of cut and feed rate were considered as control factors. Since cooling/lubricating techniques significantly affects the machining performance, prediction model development of quality characteristics was performed under minimum quantity lubrication (MQL) and high-pressure coolant (HPC) cutting conditions. The prediction accuracy of developed models was evaluated by statistical error analyzing methods. Results of regressions based machine learning techniques were also compared with probably one of the most frequently used machine learning method, namely artificial neural networks (ANN). Finally, a metaheuristic approach based on a neural network algorithm was utilized to perform an efficient multi-objective optimization of process parameters for both cutting environment.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2210-8327

Keywords

To view the access options for this content please click here
Article
Publication date: 29 April 2021

Emmanuel Adinyira, Emmanuel Akoi-Gyebi Adjei, Kofi Agyekum and Frank Desmond Kofi Fugar

Knowledge of the effect of various cash-flow factors on expected project profit is important to effectively manage productivity on construction projects. This study was…

Abstract

Purpose

Knowledge of the effect of various cash-flow factors on expected project profit is important to effectively manage productivity on construction projects. This study was conducted to develop and test the sensitivity of a Machine Learning Support Vector Regression Algorithm (SVRA) to predict construction project profit in Ghana.

Design/methodology/approach

The study relied on data from 150 institutional projects executed within the past five years (2014–2018) in developing the model. Eighty percent (80%) of the data from the 150 projects was used at hyperparameter selection and final training phases of the model development and the remaining 20% for model testing. Using MATLAB for Support Vector Regression, the parameters available for tuning were the epsilon values, the kernel scale, the box constraint and standardisations. The sensitivity index was computed to determine the degree to which the independent variables impact the dependent variable.

Findings

The developed model's predictions perfectly fitted the data and explained all the variability of the response data around its mean. Average predictive accuracy of 73.66% was achieved with all the variables on the different projects in validation. The developed SVR model was sensitive to labour and loan.

Originality/value

The developed SVRA combines variation, defective works and labour with other financial constraints, which have been the variables used in previous studies. It will aid contractors in predicting profit on completion at commencement and also provide information on the effect of changes to cash-flow factors on profit.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

To view the access options for this content please click here
Article
Publication date: 23 August 2019

Janani Balakumar and S. Vijayarani Mohan

Owing to the huge volume of documents available on the internet, text classification becomes a necessary task to handle these documents. To achieve optimal text…

Abstract

Purpose

Owing to the huge volume of documents available on the internet, text classification becomes a necessary task to handle these documents. To achieve optimal text classification results, feature selection, an important stage, is used to curtail the dimensionality of text documents by choosing suitable features. The main purpose of this research work is to classify the personal computer documents based on their content.

Design/methodology/approach

This paper proposes a new algorithm for feature selection based on artificial bee colony (ABCFS) to enhance the text classification accuracy. The proposed algorithm (ABCFS) is scrutinized with the real and benchmark data sets, which is contrary to the other existing feature selection approaches such as information gain and χ2 statistic. To justify the efficiency of the proposed algorithm, the support vector machine (SVM) and improved SVM classifier are used in this paper.

Findings

The experiment was conducted on real and benchmark data sets. The real data set was collected in the form of documents that were stored in the personal computer, and the benchmark data set was collected from Reuters and 20 Newsgroups corpus. The results prove the performance of the proposed feature selection algorithm by enhancing the text document classification accuracy.

Originality/value

This paper proposes a new ABCFS algorithm for feature selection, evaluates the efficiency of the ABCFS algorithm and improves the support vector machine. In this paper, the ABCFS algorithm is used to select the features from text (unstructured) documents. Although, there is no text feature selection algorithm in the existing work, the ABCFS algorithm is used to select the data (structured) features. The proposed algorithm will classify the documents automatically based on their content.

To view the access options for this content please click here
Article
Publication date: 18 April 2017

Yanjie Wang, Zhengchao Xie, InChio Lou, Wai Kin Ung and Kai Meng Mok

The purpose of this paper is to examine the applicability and capability of models based on a genetic algorithm and support vector machine (GA-SVM) and a genetic algorithm…

Abstract

Purpose

The purpose of this paper is to examine the applicability and capability of models based on a genetic algorithm and support vector machine (GA-SVM) and a genetic algorithm and relevance vector machine (GA-RVM) for the prediction of phytoplankton abundances associated with algal blooms in a Macau freshwater reservoir, and compare their performances with an artificial neural network (ANN) model.

Design/methodology/approach

The hybrid models GA-SVM and GA-RVM were developed for the optimal control of parameters for predicting (based on the current month’s variables) and forecasting (based on the previous three months’ variables) phytoplankton dynamics in a Macau freshwater reservoir, MSR, which has experienced cyanobacterial blooms in recent years. There were 15 environmental parameters, including pH, SiO2, alkalinity, bicarbonate (HCO3−), dissolved oxygen (DO), total nitrogen (TN), UV254, turbidity, conductivity, nitrate (NO3−), orthophosphate (PO43−), total phosphorus (TP), suspended solids (SS) and total organic carbon (TOC) selected from the correlation analysis, with eight years (2001-2008) of data for training, and the most recent three years (2009-2011) for testing.

Findings

For both accuracy performance and generalized performance, the ANN, GA-SVM and GA-RVM had similar predictive powers of R2 of 0.73-0.75. However, whereas ANN and GA-RVM models showed very similar forecast performances, GA-SVM models had better forecast performances of R2 (0.862), RMSE (0.266) and MAE (0.0710) with the respective parameters of 0.987, 0.161 and 0.032 optimized using GA.

Originality/value

This is the first application of GA-SVM and GA-RVM models for predicting and forecasting algal bloom in freshwater reservoirs. GA-SVM was shown to be an effective new way for monitoring algal bloom problem in water resources.

Details

Engineering Computations, vol. 34 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article
Publication date: 21 May 2021

Saddam Bensaoucha, Youcef Brik, Sandrine Moreau, Sid Ahmed Bessedik and Aissa Ameur

This paper provides an effective study to detect and locate the inter-turn short-circuit faults (ITSC) in a three-phase induction motor (IM) using the support vector

Downloads
192

Abstract

Purpose

This paper provides an effective study to detect and locate the inter-turn short-circuit faults (ITSC) in a three-phase induction motor (IM) using the support vector machine (SVM). The characteristics extracted from the analysis of the phase shifts between the stator currents and their corresponding voltages are used as inputs to train the SVM. The latter automatically decides on the IM state, either a healthy motor or a short-circuit fault on one of its three phases.

Design/methodology/approach

To evaluate the performance of the SVM, three supervised algorithms of machine learning, namely, multi-layer perceptron neural networks (MLPNNs), radial basis function neural networks (RBFNNs) and extreme learning machine (ELM) are used along with the SVM in this study. Thus, all classifiers (SVM, MLPNN, RBFNN and ELM) are tested and the results are compared with the same data set.

Findings

The obtained results showed that the SVM outperforms MLPNN, RBFNNs and ELM to diagnose the health status of the IM. Especially, this technique (SVM) provides an excellent performance because it is able to detect a fault of two short-circuited turns (early detection) when the IM is operating under a low load.

Originality/value

The original of this work is to use the SVM algorithm based on the phase shift between the stator currents and their voltages as inputs to detect and locate the ITSC fault.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 6000