Search results

1 – 10 of over 7000

Abstract

Details

Machine Learning and Artificial Intelligence in Marketing and Sales
Type: Book
ISBN: 978-1-80043-881-1

Article
Publication date: 31 January 2022

Simone Massulini Acosta and Angelo Marcio Oliveira Sant'Anna

Process monitoring is a way to manage the quality characteristics of products in manufacturing processes. Several process monitoring based on machine learning algorithms…

Abstract

Purpose

Process monitoring is a way to manage the quality characteristics of products in manufacturing processes. Several process monitoring based on machine learning algorithms have been proposed in the literature and have gained the attention of many researchers. In this paper, the authors developed machine learning-based control charts for monitoring fraction non-conforming products in smart manufacturing. This study proposed a relevance vector machine using Bayesian sparse kernel optimized by differential evolution algorithm for efficient monitoring in manufacturing.

Design/methodology/approach

A new approach was carried out about data analysis, modelling and monitoring in the manufacturing industry. This study developed a relevance vector machine using Bayesian sparse kernel technique to improve the support vector machine used to both regression and classification problems. The authors compared the performance of proposed relevance vector machine with other machine learning algorithms, such as support vector machine, artificial neural network and beta regression model. The proposed approach was evaluated by different shift scenarios of average run length using Monte Carlo simulation.

Findings

The authors analyse a real case study in a manufacturing company, based on best machine learning algorithms. The results indicate that proposed relevance vector machine-based process monitoring are excellent quality tools for monitoring defective products in manufacturing process. A comparative analysis with four machine learning models is used to evaluate the performance of the proposed approach. The relevance vector machine has slightly better performance than support vector machine, artificial neural network and beta models.

Originality/value

This research is different from the others by providing approaches for monitoring defective products. Machine learning-based control charts are used to monitor product failures in smart manufacturing process. Besides, the key contribution of this study is to develop different models for fault detection and to identify any change point in the manufacturing process. Moreover, the authors’ research indicates that machine learning models are adequate tools for the modelling and monitoring of the fraction non-conforming product in the industrial process.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 17 October 2008

Thiago Turchetti Maia, Antônio Pádua Braga and André F. de Carvalho

To create new hybrid algorithms that combine boosting and support vector machines to outperform other known algorithms in selected contexts of binary classification problems.

Abstract

Purpose

To create new hybrid algorithms that combine boosting and support vector machines to outperform other known algorithms in selected contexts of binary classification problems.

Design/methodology/approach

Support vector machines (SVM) are known in the literature to be one of the most efficient learning models for tackling classification problems. Boosting algorithms rely on other classification algorithms to produce different weak hypotheses which are later combined into a single strong hypothesis. In this work the authors combine boosting with support vector machines, namely the AdaBoost.M1 and sequential minimal optimization (SMO) algorithms, to create new hybrid algorithms that outperform standard SVMs in selected contexts. This is achieved by integration with different degrees of coupling, where the four algorithms proposed range from simple black‐box integration to modifications and mergers between AdaBoost.M1 and SMO components.

Findings

The results show that the proposed algorithms exhibited better performance for most problems experimented. It is possible to identify trends of behavior bound to specific properties of the problems solved, where one may hence apply the proposed algorithms in situations where it is known to succeed.

Research limitations/implications

New strategies for combining boosting and SVMs may be further developed using the principles introduced in this paper, possibly resulting in other algorithms with yet superior performance.

Practical implications

The hybrid algorithms proposed in this paper may be used in classification problems with properties that they are known to handle well, thus possibly offering better results than other known algorithms in the literature.

Originality/value

This paper introduces the concept of merging boosting and SVM training algorithms to obtain hybrid solutions with better performance than standard SVMs.

Details

Kybernetes, vol. 37 no. 9/10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 28 March 2008

József Valyon and Gábor Horváth

The purpose of this paper is to present extended least squares support vector machines (LS‐SVM) where data selection methods are used to get sparse LS‐SVM solution, and to…

Abstract

Purpose

The purpose of this paper is to present extended least squares support vector machines (LS‐SVM) where data selection methods are used to get sparse LS‐SVM solution, and to overview and compare the most important data selection approaches.

Design/methodology/approach

The selection methods are compared based on their theoretical background and using extensive simulations.

Findings

The paper shows that partial reduction is an efficient way of getting a reduced complexity sparse LS‐SVM solution, while partial reduction exploits full knowledge contained in the whole training data set. It also shows that the reduction technique based on reduced row echelon form (RREF) of the kernel matrix is superior when compared to other data selection approaches.

Research limitations/implications

Data selection for getting a sparse LS‐SVM solution can be done in the different representations of the training data: in the input space, in the intermediate feature space, and in the kernel space. Selection in the kernel space can be obtained by finding an approximate basis of the kernel matrix.

Practical implications

The RREF‐based method is a data selection approach with a favorable property: there is a trade‐off tolerance parameter that can be used for balancing complexity and accuracy.

Originality/value

The paper gives contributions to the construction of high‐performance and moderate complexity LS‐SVMs.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 1 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Open Access
Article
Publication date: 28 July 2020

Harleen Kaur and Vinita Kumari

Diabetes is a major metabolic disorder which can affect entire body system adversely. Undiagnosed diabetes can increase the risk of cardiac stroke, diabetic nephropathy…

4788

Abstract

Diabetes is a major metabolic disorder which can affect entire body system adversely. Undiagnosed diabetes can increase the risk of cardiac stroke, diabetic nephropathy and other disorders. All over the world millions of people are affected by this disease. Early detection of diabetes is very important to maintain a healthy life. This disease is a reason of global concern as the cases of diabetes are rising rapidly. Machine learning (ML) is a computational method for automatic learning from experience and improves the performance to make more accurate predictions. In the current research we have utilized machine learning technique in Pima Indian diabetes dataset to develop trends and detect patterns with risk factors using R data manipulation tool. To classify the patients into diabetic and non-diabetic we have developed and analyzed five different predictive models using R data manipulation tool. For this purpose we used supervised machine learning algorithms namely linear kernel support vector machine (SVM-linear), radial basis function (RBF) kernel support vector machine, k-nearest neighbour (k-NN), artificial neural network (ANN) and multifactor dimensionality reduction (MDR).

Open Access
Article
Publication date: 9 June 2021

Jin Gi Kim, Hyun-Tak Lee and Bong-Gyu Jang

This paper examines whether the successful bid rate of the OnBid public auction, published by Korea Asset Management Corporation, can identify and forecast the Korea…

Abstract

Purpose

This paper examines whether the successful bid rate of the OnBid public auction, published by Korea Asset Management Corporation, can identify and forecast the Korea business-cycle expansion and contraction regimes characterized by the OECD reference turning points. We use logistic regression and support vector machine in performing the OECD regime classification and predicting three-month-ahead regime. We find that the OnBid auction rate conveys important information for detecting the coincident and future regimes because this information might be closely related to deleveraging regarding default on debt obligations. This finding suggests that corporate managers and investors could use the auction information to gauge the regime position in their decision-making. This research has an academic significance that reveals the relationship between the auction market and the business-cycle regimes.

Details

Journal of Derivatives and Quantitative Studies: 선물연구, vol. 29 no. 2
Type: Research Article
ISSN: 1229-988X

Keywords

Open Access
Article
Publication date: 3 August 2020

Djordje Cica, Branislav Sredanovic, Sasa Tesic and Davorin Kramar

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects…

Abstract

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with cutting fluids, the machining industries are continuously developing technologies and systems for cooling/lubricating of the cutting zone while maintaining machining efficiency. In the present study, three regression based machine learning techniques, namely, polynomial regression (PR), support vector regression (SVR) and Gaussian process regression (GPR) were developed to predict machining force, cutting power and cutting pressure in the turning of AISI 1045. In the development of predictive models, machining parameters of cutting speed, depth of cut and feed rate were considered as control factors. Since cooling/lubricating techniques significantly affects the machining performance, prediction model development of quality characteristics was performed under minimum quantity lubrication (MQL) and high-pressure coolant (HPC) cutting conditions. The prediction accuracy of developed models was evaluated by statistical error analyzing methods. Results of regressions based machine learning techniques were also compared with probably one of the most frequently used machine learning method, namely artificial neural networks (ANN). Finally, a metaheuristic approach based on a neural network algorithm was utilized to perform an efficient multi-objective optimization of process parameters for both cutting environment.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2210-8327

Keywords

Article
Publication date: 29 April 2021

Emmanuel Adinyira, Emmanuel Akoi-Gyebi Adjei, Kofi Agyekum and Frank Desmond Kofi Fugar

Knowledge of the effect of various cash-flow factors on expected project profit is important to effectively manage productivity on construction projects. This study was…

Abstract

Purpose

Knowledge of the effect of various cash-flow factors on expected project profit is important to effectively manage productivity on construction projects. This study was conducted to develop and test the sensitivity of a Machine Learning Support Vector Regression Algorithm (SVRA) to predict construction project profit in Ghana.

Design/methodology/approach

The study relied on data from 150 institutional projects executed within the past five years (2014–2018) in developing the model. Eighty percent (80%) of the data from the 150 projects was used at hyperparameter selection and final training phases of the model development and the remaining 20% for model testing. Using MATLAB for Support Vector Regression, the parameters available for tuning were the epsilon values, the kernel scale, the box constraint and standardisations. The sensitivity index was computed to determine the degree to which the independent variables impact the dependent variable.

Findings

The developed model's predictions perfectly fitted the data and explained all the variability of the response data around its mean. Average predictive accuracy of 73.66% was achieved with all the variables on the different projects in validation. The developed SVR model was sensitive to labour and loan.

Originality/value

The developed SVRA combines variation, defective works and labour with other financial constraints, which have been the variables used in previous studies. It will aid contractors in predicting profit on completion at commencement and also provide information on the effect of changes to cash-flow factors on profit.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 24 October 2022

Vikas Sharma, Joy Prakash Misra and Sandeep Singhal

In the present study, wire electro-spark machining of Titanium alloy is performed with the machining parameter such as spark-on time, spark-off time, current and servo…

Abstract

Purpose

In the present study, wire electro-spark machining of Titanium alloy is performed with the machining parameter such as spark-on time, spark-off time, current and servo voltage. The purpose of this study is to model surface roughness using machine learning approach for input/controllable variable. Machined surface examined using scanning electron microscope (SEM) and XRD methods.

Design/methodology/approach

Full factorial approach has been used to design the experiments with varying machining parameters into three-level four factors. Obtained surface roughness was modeled using machine learning methods namely Gaussian process regression (GPR) and support vector machine (SVM) methods. These methods were compared for both training and testing data with a coefficient of correlation and root mean square error basis. Machined surface examined using scanned electron microscopy and XRD for surface quality produced and check migration of tool material to workpiece material.

Findings

Machine learning algorithms has excellent scope for prediction quality response for the wire electric discharge machining (WEDM) process, resulting in saving of time and cost as it is difficult to find each time experimentally. It has been found that the proposed model with minimum computational time, provides better solution and avoids priority weightage calculation by decision-makers.

Originality/value

The proposed modeling provides better predication about surface produced while machining of Ti6Al7Nb using zinc-coated brass wire electrode during WEDM operation.

Details

International Journal of Structural Integrity, vol. 13 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 9 May 2022

Khalid Iqbal and Muhammad Shehrayar Khan

In this digital era, email is the most pervasive form of communication between people. Many users become a victim of spam emails and their data have been exposed.

1374

Abstract

Purpose

In this digital era, email is the most pervasive form of communication between people. Many users become a victim of spam emails and their data have been exposed.

Design/methodology/approach

Researchers contribute to solving this problem by a focus on advanced machine learning algorithms and improved models for detecting spam emails but there is still a gap in features. To achieve good results, features also play an important role. To evaluate the performance of applied classifiers, 10-fold cross-validation is used.

Findings

The results approve that the spam emails are correctly classified with the accuracy of 98.00% for the Support Vector Machine and 98.06% for the Artificial Neural Network as compared to other applied machine learning classifiers.

Originality/value

In this paper, Point-Biserial correlation is applied to each feature concerning the class label of the University of California Irvine (UCI) spambase email dataset to select the best features. Extensive experiments are conducted on selected features by training the different classifiers.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 10 of over 7000