Search results

1 – 10 of over 144000
Open Access
Article
Publication date: 13 February 2024

Bayu Giri Prakosa, Danur Condro Guritno, Theresia Anindita, Mahrus Kurniawan and Ahmad Cahyo Nugroho

This study aims to analyze how ready a firm is to transform into Industry 4.0 using the Readiness Index (INDI 4.0) assessment. It also investigates the differences (before and…

Abstract

Purpose

This study aims to analyze how ready a firm is to transform into Industry 4.0 using the Readiness Index (INDI 4.0) assessment. It also investigates the differences (before and after) of the program “Making Indonesia 4.0” in 2018 in socioeconomic and demographic aspects.

Design/methodology/approach

The INDI 4.0 assessment involved a self-evaluation by 622 companies across 13 industry sectors, subsequently verified by the Ministry of Industry. This study incorporates discussions with industry experts to enhance the interpretation of the analytical findings.

Findings

This study explores the interrelation among the components of INDI 4.0 across different levels, assessing the readiness of each sector for Industry 4.0. The findings reveal the diverse impact of implementing Industry 4.0 in Indonesia on socioeconomic and demographic aspects. Furthermore, the study proposes several policy recommendations for the Indonesian government’s consideration.

Research limitations/implications

This study’s scope is confined to the industrial context of Indonesia, as the assessment components are tailored to the specific characteristics and culture of the country’s industry. Subsequent research endeavors can leverage this study as a foundational reference, adapting the components to align with the particular interests of other nations.

Practical implications

Businesses, especially those in Indonesia, can employ these findings to evaluate their position in the context of Industry 4.0 transformation compared to their industry. Simultaneously, the Indonesian government can use these results as a starting point to evaluate and potentially enhance their policies related to Industry 4.0. We recommend five policy proposals for the Indonesian government: diversifying measurement models, shifting terminology, emphasizing soft skills, promoting continuous learning and implementing Center of Digital Industry Indonesia 4.0 (PIDI 4.0) initiatives.

Social implications

This study offers a broad impact of Industry 4.0 implementation in socioeconomic and demographic aspects in Indonesia, such as income, job-shifting, age, educational background and gender.

Originality/value

To the best of our knowledge, no prior research has explored the repercussions of industrial implementation on socioeconomic and demographic facets.

Details

Digital Transformation and Society, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0761

Keywords

Article
Publication date: 16 February 2024

Harshad Sonar, Isha Sharma, Nikhil Ghag and Bhagyashri Raje

The agri-food industry is experiencing a revolutionary shift due to the introduction of Industry 4.0 technologies to improve efficiency, transparency and sustainability. The…

Abstract

Purpose

The agri-food industry is experiencing a revolutionary shift due to the introduction of Industry 4.0 technologies to improve efficiency, transparency and sustainability. The importance of agri-food supply chains (AFSC) in promoting sustainability is expanding as the globe struggles with issues including resource scarcity, climate change and population growth. In order to better understand how Industry 4.0 might improve sustainability in a world that is changing quickly, this work aims to focus on identifying various sustainability assessment factors influencing AFSC to increase overall sustainability, minimize resource consumption, cut waste and streamline operations.

Design/methodology/approach

Important sustainability assessment factors are identified from the past academic literature and are then validated using the fuzzy-Delphi method. A method called decision-making trial and evaluation laboratory (DEMATEL) is used to examine and analyze structural models with complex causal linkages. The results are then validated using sensitivity analysis.

Findings

The factors that emerged as the highest ranked for evaluating the sustainability of Industry 4.0 in AFSC are market competitiveness, and knowledge and skill development, followed by resource efficiency. Industry 4.0 technologies are essential for increasing the marketability of agricultural products because of the major implications of market competitiveness. The significance of knowledge and skill development draws attention to Industry 4.0’s contribution to the promotion of chances for farmers and agricultural employees to increase their capability.

Practical implications

By outlining the nexus between Industry 4.0 technologies and sustainability, the study presents a comprehensive framework that would be relevant for researchers, policymakers and industry stakeholders who want to leverage Industry 4.0 technology to build more sustainable AFSC in the future. The study findings can help the farmers or producers make sensible choices that adhere to sustainability standards and guarantee long-term financial viability.

Originality/value

The originality of this work lies in the identification of sustainability assessment factors especially for AFSC in the era of digitalization which has not been discussed previously.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 15 February 2024

Poonam Sahoo, Pavan Kumar Saraf and Rashmi Uchil

Significant developments in the service sector have been brought about by Industry 4.0. Automated digital technologies make it possible to upgrade existing services and develop…

Abstract

Purpose

Significant developments in the service sector have been brought about by Industry 4.0. Automated digital technologies make it possible to upgrade existing services and develop modern industrial services. This study prioritizes critical factors for adopting Industry 4.0 in the Indian service industries.

Design/methodology/approach

The author identified four criteria and fifteen significant factors from the relevant literature that have been corroborated by industry experts. Models are then developed by the analytical hierarchy process (AHP) and analytical network process (ANP) approach to ascertain the significant factors for adopting Industry 4.0 in service industries. Further, sensitivity analysis has been conducted to determine the sensitivities of the rank of criteria and sub-factors to corroborate the results.

Findings

The outcome reveals the top significant criteria as organizational criteria (0.5019) and innovation criteria (0.3081). This study prioritizes six significant factors information technology (IT) specialization, digital decentralization of all departments, organizational size, smart services through customer data, top management support and Industry 4.0 infrastructure in the transition toward Industry 4.0 in the service industries.

Practical implications

The potential factors identified in this study will assist managers in determining strategies to effectively manage the Industry 4.0 transition by concentrating on top priorities when leveraging Industry 4.0. The significance of organizational and innovation criteria given more weight will lay the groundwork for future Industry 4.0 implementation guidelines in service industries.

Originality/value

Our research is novel since, to our knowledge, no previous study has investigated the potential critical factors from organizational, environmental, innovation and cost dimensions. Thus, the potential critical factors identified are the contributions of this study.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 13 February 2024

Sara El-Breshy, Ahmad E. Elhabashy, Hadi Fors and Asmaa Harfoush

With the emergence of the different Industry 4.0 technologies and the interconnectedness between the physical and cyber components within manufacturing systems, the manufacturing…

Abstract

Purpose

With the emergence of the different Industry 4.0 technologies and the interconnectedness between the physical and cyber components within manufacturing systems, the manufacturing environment is becoming more susceptible to unexpected disruptions, and manufacturing systems need to be even more resilient than before. Hence, the purpose of this work is to explore how does incorporating Industry 4.0 into current manufacturing systems affects (positively or negatively) its resiliency.

Design/methodology/approach

A Systematic Literature Review (SLR) was performed with a focus on studying the manufacturing system’s resilience when applying Industry 4.0 technologies. The SLR is composed of four phases, which are (1) questions formulation, (2) determining an adequate search strategy, (3) publications filtering and (4) analysis and interpretation.

Findings

From the SLR results’ analysis, four potential research opportunities are proposed related to conducting additional research within the research themes in this field, considering less studied Industry 4.0 technologies or more than one technology, investigating the impact of some technologies on manufacturing system’s resilience, exploring more avenues to incorporate resiliency to preserve the state of the system, and suggesting metrics to quantify the resilience of manufacturing systems.

Originality/value

Although there are a number of publications discussing the resiliency of manufacturing systems, none fully investigated this topic when different Industry 4.0 technologies have been considered. In addition to determining the current research state-of-art in this relatively new research area and identifying potential future research opportunities, the main value of this work is in providing insights about this research area across three different perspectives/streams: (1) Industry 4.0 technologies, (2) resiliency and (3) manufacturing systems and their intersections.

Details

Journal of Manufacturing Technology Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 13 February 2024

Arthur Joseph Avwokeni

The dearth of leadership competencies to transform traditional industries to Industry 4.0 is a barrier to global production. This study explains the deficiencies in leadership…

Abstract

Purpose

The dearth of leadership competencies to transform traditional industries to Industry 4.0 is a barrier to global production. This study explains the deficiencies in leadership competencies that hinder the transformation of traditional industries to Industry 4.0.

Design/methodology/approach

Leadership was explained into transactional leadership, digital leadership and Leadership 4.0. Then, the network of relationships between these leadership constructs was plotted in a path diagram to learn the mediating effect of digital leadership.

Findings

The results indicate that a lack of digital competencies to coordinate tasks, share information and solve problems in a digitalized environment is the barrier to the transformation.

Practical implications

The findings can be used in human resources (HR) management. In addition, the findings provide evidence to present the contingency theory as a universal theory of leadership.

Originality/value

The study is the first to assess the mediating effect of digital leadership on transactional leadership to explain the changes to strategic leadership due to the emergence of Leadership 4.0.

Details

Journal of Economic and Administrative Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1026-4116

Keywords

Article
Publication date: 26 December 2023

Sohaib Mustafa, Sehrish Rana and Muhammad Mateen Naveed

This study explores the adoption of Industry 4.0 in developing countries' export industries, focusing on factors influencing this adoption, the moderating role of market pressure…

153

Abstract

Purpose

This study explores the adoption of Industry 4.0 in developing countries' export industries, focusing on factors influencing this adoption, the moderating role of market pressure and prioritizing key factors for sustainable growth.

Design/methodology/approach

Based on the “TOE theory” this study has proposed a research framework to identify the factors influencing the adoption and sustainable implementation of Industry 4.0 in the export industry. This study has collected valid datasets from 387 export-oriented industries and applied SEM-ANN dual-stage hybrid model to capture linear and nonlinear interaction between variables.

Findings

Results revealed that Technical Capabilities, System Flexibility, Software Infrastructure, Human Resource Competency and Market pressure significantly influence the Adoption of Industry 4.0. Higher market pressure as a moderator also improves the Industry 4.0 adoption process. Results also pointed out that system flexibility is a gray area in Industry 4.0 adoption, which can be enhanced in the export industry to maintain a sustainable adoption and implementation of Industry 4.0.

Originality/value

Minute information is available on the factors influencing the adoption of Industry 4.0 in export-oriented industries. This study has empirically explored the role of influential factors in Industry 4.0 and ranked them based on their normalized importance.

Details

Journal of Manufacturing Technology Management, vol. 35 no. 2
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 9 January 2024

Love Kumar and Rajiv Kumar Sharma

In the context of promoting sustainable development in SMEs, the present study aims to investigate the relationship among solution dimensions based on the Industry 4.0 (I4.0

Abstract

Purpose

In the context of promoting sustainable development in SMEs, the present study aims to investigate the relationship among solution dimensions based on the Industry 4.0 (I4.0) concept.

Design/methodology/approach

The study employs a comprehensive methodology that includes a systematic literature review, workshop, grounded theory and interpretive structural modeling. Various dimensions concerning I4.0 sustainability are tested and evaluated using a questionnaire design followed by hypothesis formulation. Further, grounded theory is used to extract the key solution dimensions that capture the essence of I4.0 implementation in SMEs. Finally, the solution dimensions for I4.0 sustainability are modeled using the ISM approach to understand the structural interdependencies among them, and Matrice d'Impacts Croisés Multiplication Applied to a Classification (MICMAC) analysis is done to understand the driving and dependence power among these dimensions.

Findings

The study identified 14 solution dimensions for the implementation of I4.0 in SMEs for sustainable development. Out of the 14 solution dimensions, human resource training programs (D4) appear at level 11, followed by top management commitment (D1), strategic collaborations (D3) and coordination among key stakeholders (D5) at level 2 in the hierarchical interpretive structural modeling (ISM) model. Also, these dimensions have an effect size of more than 0.50 which indicates a substantial correlation between the sustainability dimensions and Industry 4.0 implementation in SMEs.

Originality/value

The study contributes to the overall goal of fostering sustainability within the SME sector, which can pave the way for various stakeholders for the successful implementation of I4.0 sustainable solution dimensions.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 18 January 2024

Arish Ibrahim and Gulshan Kumar

This study aims to explore the integration of Industry 4.0 technologies with lean six sigma practices in the manufacturing sector for enhanced process improvement.

Abstract

Purpose

This study aims to explore the integration of Industry 4.0 technologies with lean six sigma practices in the manufacturing sector for enhanced process improvement.

Design/methodology/approach

This study used a fuzzy decision-making trial and evaluation laboratory approach to identify critical Industry 4.0 technologies that can be harmonized with Lean Six Sigma methodologies for achieving improved processes in manufacturing.

Findings

The research reveals that key technologies such as modeling and simulation, artificial intelligence (AI) and machine learning, big data analytics, automation and industrial robots and smart sensors are paramount for achieving operational excellence when integrated with Lean Six Sigma.

Research limitations/implications

The study is limited to the identification of pivotal Industry 4.0 technologies for Lean Six Sigma integration in manufacturing. Further studies can explore the implementation challenges and the quantifiable benefits of such integrations.

Practical implications

Integrating Industry 4.0 technologies with Lean Six Sigma enhances manufacturing efficiency. This approach leverages AI for predictive analysis, uses smart sensors for energy efficiency and adaptable robots for flexible production. It is vital for competitive advantage, significantly improving decision-making, reducing costs and streamlining operations in the manufacturing sector.

Social implications

The integration of Industry 4.0 technologies with Lean Six Sigma in manufacturing has significant social implications. It promotes job creation in high-tech sectors, necessitating advanced skill development and continuous learning among the workforce. This shift fosters an innovative, knowledge-based economy, potentially reducing the skills gap. Additionally, it enhances workplace safety through automation, reduces hazardous tasks for workers and contributes to environmental sustainability by optimizing resource use and reducing waste in manufacturing processes.

Originality/value

This study offers a novel perspective on synergizing advanced Industry 4.0 technologies with established Lean Six Sigma practices for enhanced process improvement in manufacturing. The findings can guide industries in prioritizing their technological adoptions for continuous improvement.

Details

International Journal of Lean Six Sigma, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 27 October 2023

Ayman wael AL-Khatib

The current work sought to investigate the mediating effect of supply chain ambidexterity on the relationship between Industry 4.0 capabilities and operational performance of…

Abstract

Purpose

The current work sought to investigate the mediating effect of supply chain ambidexterity on the relationship between Industry 4.0 capabilities and operational performance of manufacturing firms in Jordan.

Design/methodology/approach

Data collection was carried out through a survey with 253 respondents from manufacturing firms in Jordan through the first quarter in 2023. The quantitative approach and structural equation modeling (SEM) were applied to analyze the collected data. Dynamic capabilities view (DCV) theory was the adopted theoretical lens for this work.

Findings

The results demonstrated that Industry 4.0 capabilities positively and significantly affect exploration, exploitation and operational performance. In addition, the results confirmed that exploration and exploitation positively and significantly affect operational performance. Further, it is also found that exploration and exploitation in the supply chain positively and significantly mediate the relationship between Industry 4.0 capabilities and operational performance.

Originality/value

This study focuses on this gap to deepen the understanding of operational performance in a recent manufacturing environment under various factors and perspectives (Industry 4.0 capabilities and supply chain ambidexterity).

Article
Publication date: 20 November 2023

Gabriel Bertholdo Vargas, Jefferson de Oliveira Gomes and Rolando Vargas Vallejos

The purpose of this paper is to present a practical data-based framework for the prioritization of investment in manufacturing technologies, methods and tools, and to demonstrate…

Abstract

Purpose

The purpose of this paper is to present a practical data-based framework for the prioritization of investment in manufacturing technologies, methods and tools, and to demonstrate its applicability and practical relevance through two case studies of manufacturing firms of different industrial segments.

Design/methodology/approach

The proposed framework is based on network theory applied on technology adoption. For this, the database of Industry 4.0 maturity assessments of SENAI was used to develop data visualization tools named “Technology Networks”. Thus, this study is descriptive research with correlational design. Besides, the framework was applied in two companies and semi-structured interviews were carried out with domain experts.

Findings

The technology networks highlight the technological adoption patterns of six industrial segments, by considering the answers of 863 Brazilian companies. In general, less sophisticated technologies were positioned in the center of the networks, which facilitates the visualization of adoption paths. Moreover, the networks presented a well-balanced adoption scenario of Industry 4.0 related technologies and lean manufacturing methods and tools.

Research limitations/implications

Since the database was not built under an experimental design, it is not expected to make statistical inferences about the variables. Furthermore, the decision to use an available database prevented the editing or inclusion of technologies. Besides, it is estimated that the technology networks given have few years for obsolescence due to the fast pace of technological development.

Practical implications

The framework is a tool that may be used by practicing manufacturing managers and entrepreneurs for taking assertive decisions regarding the adoption of manufacturing technologies, methods and tools. The proposition of using network theory to support decision making on this topic may lead to further studies, developments and adaptations of the framework.

Originality/value

This paper addresses the topics of lean manufacturing and Industry 4.0 in an unprecedented way, by quantifying the adoption of its technologies, methods and tools and presenting it in network visualizations. The main value of this paper is the comprehensive framework that applies the technology networks for supporting decision making regarding technology adoption.

Details

Journal of Manufacturing Technology Management, vol. 35 no. 1
Type: Research Article
ISSN: 1741-038X

Keywords

1 – 10 of over 144000