Search results

1 – 10 of 48
Article
Publication date: 8 February 2016

Jingsen Zhang, Jing Zhang and Yanchao Zhai

This paper aims to elucidate the geochemical characteristics of the hydrothermally altered rocks with gold mineralization and the elemental transfers in hydrothermal alteration

Abstract

Purpose

This paper aims to elucidate the geochemical characteristics of the hydrothermally altered rocks with gold mineralization and the elemental transfers in hydrothermal alteration hosted in alkaline complex in Hongshan area, Taihang Orogen, North China, and preliminarily discuss the relationship between the gold mineralization and the hydrothermal alteration.

Design/methodology/approach

Based on detailed field investigation, sampling and petrographical observation, major oxides and trace elements of nine rock samples are analyzed, and the method of mass balance equation is used in calculation of the elemental transfer.

Findings

Three alteration stages in the Hongshan area are identified, which are the early, main and late alterations. The early one is characteristic of extensive pyritization in the complex, which is related to the mantle-derived magmas and occurs before gold mineralization. The main one is characterized by developing a great deal of altered rock in fracture zones with the gain of many elements and the loss of a few elements. The late one is dominated by limonitization, that is limonite replacing the early pyrite or Fe2O3 replacing FeO in rocks. In the main alteration, the altered rocks obviously gain fluid component (LOI, i.e. loss on ignition) and elements such as V, As, Rb, Au, La, Ce and Nd and total rare earth elements (REEs). Elements such as K, Fe, Cu, Zn, Y, Mo, Sb, W, Re and U are gained in some altered rocks. Na and Sr are lost in all altered rocks, and Th and Bi are lost in some ones in the meantime. The following elements: Si, Mg, Mn, Ca, Li, Sc, Cr, Co, Ni, Zr, Ag, Ba and Hg show either gain or loss in different altered rocks. Au is notably enriched in the hydrothermal alteration. The elemental gain or loss in the altered rocks indicates that the main mineralization develops extensive de-alkalinization, local potassic metasomatism, silicification or desilicification.

Details

World Journal of Engineering, vol. 13 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 March 2023

Mathew Gregory Tagwai, Onimisi Abdullateef Jimoh, Shaib Abdulazeez Shehu and Hareyani Zabidi

This paper aims to give an oversight of what is being done by researchers in GIS and remote sensing (field) to explore minerals. The main objective of this review is to explore…

Abstract

Purpose

This paper aims to give an oversight of what is being done by researchers in GIS and remote sensing (field) to explore minerals. The main objective of this review is to explore how GIS and remote sensing have been beneficial in identifying mineral deposits for easier and cost-effective mining.

Design/methodology/approach

The approach of this research used Web of Science to generate a database of published articles on the application of GIS and remote sensing techniques for mineral exploration. The literature was further digested, noting the main findings, adopted method, illustration and research scales.

Findings

When applied alone, each technique seems effective, but it is important to know that combining different methods is more effective in identifying ore deposits.

Originality/value

This paper also examined and provided possible solutions to both current and future perspective issues relating to the application of GIS and remote sensing to mineral exploration. The authors believe that the conclusions and recommendations drawn from case studies and literature review will be of great importance to geoscientists and policymakers.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 May 2002

Chongbin Zhao, Ge Lin, B.E. Hobbs, Yuejun Wang, H.B. Mühlhaus and A. Ord

We present the finite element simulations of reactive mineral‐carrying fluids mixing and mineralization in pore‐fluid saturated hydrothermal/sedimentary basins. In particular we…

Abstract

We present the finite element simulations of reactive mineral‐carrying fluids mixing and mineralization in pore‐fluid saturated hydrothermal/sedimentary basins. In particular we explore the mixing of reactive sulfide and sulfate fluids and the relevant patterns of mineralization for lead, zinc and iron minerals in the regime of temperature‐gradient‐driven convective flow. Since the mineralization and ore body formation may last quite a long period of time in a hydrothermal basin, it is commonly assumed that, in the geochemistry, the solutions of minerals are in an equilibrium state or near an equilibrium state. Therefore, the mineralization rate of a particular kind of mineral can be expressed as the product of the pore‐fluid velocity and the equilibrium concentration of this particular kind of mineral. Using the present mineralization rate of a mineral, the potential of the modern mineralization theory is illustrated by means of finite element studies related to reactive mineral‐carrying fluids mixing problems in materially homogeneous and inhomogeneous porous rock basins.

Details

Engineering Computations, vol. 19 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 2001

Chongbin Zhao, Ge Lin, B.E. Hobbs, H.B. Mühlhaus, A. Ord and Yuejun Wang

We use the finite element method to model the heat transfer phenomenon through permeable cracks in hydrothermal systems with upward throughflow. Since the finite element method is…

Abstract

We use the finite element method to model the heat transfer phenomenon through permeable cracks in hydrothermal systems with upward throughflow. Since the finite element method is an approximate numerical method, the method must be validated before it is used to solve any new kind of problem. However, the analytical solution, which can be used to validate the finite element method and other numerical methods, is rather limited in the literature, especially for the problem considered here. Keeping this in mind, we have derived analytical solutions for the temperature distribution along the vertical axis of a crack in a fluid‐saturated porous layer. After the finite element method is validated by comparing the numerical solution with the analytical solution for the same benchmark problem, it is used to investigate the pore‐fluid flow and heat transfer in layered hydrothermal systems with vertical permeable cracks. The related analytical and numerical results have demonstrated that vertical cracks are effective and efficient members to transfer heat energy from the bottom section to the top section in hydrothermal systems with upward throughflow.

Details

Engineering Computations, vol. 18 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2000

Chongbin Zhao, B.E. Hobbs, H.B. Mühlhaus, A. Ord and Ge Lin

Numerical methods are used to solve double diffusion driven reactive flow transport problems in deformable fluid‐saturated porous media. In particular, the temperature dependent…

Abstract

Numerical methods are used to solve double diffusion driven reactive flow transport problems in deformable fluid‐saturated porous media. In particular, the temperature dependent reaction rate in the non‐equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAC and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore‐fluid flow, heat transfer and species transport/chemical reactions in deformable fluid‐saturated porous media has been developed. The coupled problem is divided into two sub‐problems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, it is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper. The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.

Details

Engineering Computations, vol. 17 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 June 2022

Aminu Muhammad, Sabah M. Mohammad, Zainuriah Hassan, Suvindraj Rajamanickam, Shireen Mohammed Abed and M.G.B. Ashiq

The purpose of this study is to dope silver (Ag) and fluorine (F) in zinc oxide (ZnO) for the enhancement of electrical and optical properties of ZnO, as previous studies reported…

Abstract

Purpose

The purpose of this study is to dope silver (Ag) and fluorine (F) in zinc oxide (ZnO) for the enhancement of electrical and optical properties of ZnO, as previous studies reported the improvement of these properties using individual doping of F and Ag. In this paper, F and Ag co-doped ZnO nanorods were synthesized using a modified hydrothermal method.

Design/methodology/approach

The hydrothermal method was modified and used for the synthesis of the doped ZnO nanostructures, where stainless autoclave and oven were replaced with the Duran laboratory bottle and water boiler system in the process. The ultraviolet metal-semiconductor-metal photodetector (PD) was fabricated using DC sputtering method.

Findings

Vertically aligned nanorods images were captured from field emission scanning electron microscopy. XPS analysis confirmed greater spin-orbital interaction in the F and Ag co-doped ZnO sample and revealed the presence of F, Ag, Zn and O in the samples, indicating a successful doping process. X-ray diffraction revealed a hexagonal wurtzite structure with enhanced crystal quality upon co-doping. The bandgap decreased from 3.19 to 3.14 eV upon co-doping because of reduced defects density in the sample. Finally, an ultra-violet PD was fabricated with enhanced sensitivity and response times upon co-doping.

Originality/value

The low-cost, less energy-consuming Duran laboratory bottle and water boiler system were used as the substitute of expensive, more energy-consuming stainless autoclave and oven in a hydrothermal method for synthesis of F and Ag co-doped ZnO and subsequent fabrication of PD.

Details

Microelectronics International, vol. 40 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 8 February 2023

Sumit Kumar Mehta and Sukumar Pati

The purpose of this paper is to investigate computationally the hydrothermal characteristics for forced convective laminar flow of water through a channel with a top wavy wall and…

Abstract

Purpose

The purpose of this paper is to investigate computationally the hydrothermal characteristics for forced convective laminar flow of water through a channel with a top wavy wall and a flat bottom wall having metallic porous blocks.

Design/methodology/approach

The governing equations are solved computationally using a finite element method–based numerical solver COMSOL Multiphysics® for the following range of parameters: 10 ≤ Reynolds number (Re) ≤ 500 and 10–4 ≤ Darcy number (Da) ≤ 10–1.

Findings

The presence of porous blocks significantly influences the heat transfer rate, and the value of local Nusselt number increases with the increase in Da. The value of the average Nusselt number decreases with Da for the top wall and the same is enhanced for the bottom wall of the wavy channel with porous blocks (WCPB). The value of the average Nusselt number for WCPB is significantly higher than that of the wavy channel without porous block (WCWPB), plane channel without porous block (PCWPB) and plane channel with the porous block (PCPB) at higher Re. For PCPB, the performance factor (PF) is always higher than that of WCWPB and WCPB for Da = 10–4 and Da = 10–3. Also, PF for WCPB is higher than that of WCWPB for higher Re except for Da = 10–4. Further, the value of for WCPB is higher than that of PCPB at Da = 10–2 and 10–1 at Re = 500.

Practical implications

The current study is useful in designing efficient heat exchangers for process plants, solar collectors and aerospace applications.

Originality/value

The analysis of thermo-hydraulic characteristics for laminar flow through a channel with a top wavy wall and a flat bottom wall having metallic porous blocks have been analyzed for the first time. Further, a comparative assessment of the performance has been performed with a wavy channel without a porous block, a plane channel without a porous block and a plane channel with porous blocks.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 October 2019

Iresha Herath, Ishanie Perera and Champika Hettiarachchi

Use of highly dye doped nano composite for organic pollutant degradation.

Abstract

Purpose

Use of highly dye doped nano composite for organic pollutant degradation.

Design/methodology/approach

One-pot synthesis of titanium nano-particles were carried out in the presence of N719 dye.

Findings

High dye doping and exceptional dye degradation efficiency was observed. Within 25 min, 99 per cent of methylene blue was removed from waste water.

Originality/value

A novel one-pot synthesis of the composite was introduced.

Details

Pigment & Resin Technology, vol. 49 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 January 2021

Younes Bahammou, Mounir Kouhila, Haytem Moussaoui, Hamza Lamsyehe, Zakaria Tagnamas, Abdelkader Lamharrar and Ali Idlimam

This work aims to study the hydrothermal behavior of mortar cement toward certain environmental factors (ambient air temperature and air velocity) based on its drying kinetics…

Abstract

Purpose

This work aims to study the hydrothermal behavior of mortar cement toward certain environmental factors (ambient air temperature and air velocity) based on its drying kinetics data. The objective is to provide a better understanding and controlling the stability of mortar structures, which integrate the sorption phenomenon, drying process, air pressure and intrinsic characteristics. This leads to predict the comportment of mortar structures in relation with main environmental factors and minimize the risk of cracking mortar structures at an early age.

Design/methodology/approach

Thermokinetic study was carried out in natural and forced convection solar drying at three temperatures 20, 30 and 40°C and three air velocities (1, 3 and 5 m.s-1). The empirical and semiempirical models tested successfully describe the drying kinetics of mortar. These models simulate the drying process of water absorbed by capillarity, which is the most common humidity transfer mechanism in building materials and contain parameters with physical significance, which integrate the effect of several environmental factors and intrinsic characteristics of mortar structures.

Findings

The models simulate the drying process of water absorbed by capillarity, which is the most common humidity transfer mechanism in building materials and contain parameters with physical significance, which integrate the effect of several environmental factors and intrinsic characteristics of mortar structures. The average activation energy obtained expressed the temperature effect on the mortar diffusivity. The drying constant and the diffusion coefficient can be used to predict the influence of these environmental factors on the drying behavior of various building materials and therefore on their durability.

Originality/value

Evaluation of the effect of several environmental factors and intrinsic characteristics of mortar structures on their durability.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 19 January 2024

Sobhan Pandit, Milan K. Mondal, Dipankar Sanyal, Nirmal K. Manna, Nirmalendu Biswas and Dipak Kumar Mandal

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls…

Abstract

Purpose

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls under a magnetic field. For a specific nanofluid, the study aims to bring out the effects of different segmental heating arrangements.

Design/methodology/approach

An existing in-house code based on the finite volume method has provided the numerical solution of the coupled nondimensional transport equations. Following a validation study, different explorations include the variations of Darcy–Rayleigh number (Ram = 10–104), Darcy number (Da = 10–5–10–1) segmented arrangements of heaters of identical total length, porosity index (ε = 0.1–1) and aspect ratio of the cavity (AR = 0.25–2) under Hartmann number (Ha = 10–70) and volume fraction of φ = 0.1% for the nanoparticles. In the analysis, there are major roles of the streamlines, isotherms and heatlines on the vertical mid-plane of the cavity and the profiles of the flow velocity and temperature on the central line of the section.

Findings

The finding of a monotonic rise in the heat transfer rate with an increase in Ram from 10 to 104 has prompted a further comparison of the rate at Ram equal to 104 with the total length of the heaters kept constant in all the cases. With respect to uniform heating of one entire wall, the study reveals a significant advantage of 246% rate enhancement from two equal heater segments placed centrally on opposite walls. This rate has emerged higher by 82% and 249%, respectively, with both the segments placed at the top and one at the bottom and one at the top. An increase in the number of centrally arranged heaters on each wall from one to five has yielded 286% rate enhancement. Changes in the ratio of the cavity height-to-length from 1.0 to 0.2 and 2 cause the rate to decrease by 50% and increase by 21%, respectively.

Research limitations/implications

Further research with additional parameters, geometries and configurations will consolidate the understanding. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This research contributes to the field by integrating segmented heating, magnetic fields and hybrid nanofluid in a porous flow domain, addressing existing research gaps. The findings provide valuable insights for enhancing thermal performance, and controlling heat transfer locally, and have implications for medical treatments, thermal management systems and related fields. The research opens up new possibilities for precise thermal management and offers directions for future investigations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 48