Search results

1 – 10 of over 8000
Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1443

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4529

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 August 2018

Sushant Singh and Debashis Khan

As the normality concept for frictional dilatant material has a serious drawback, the key feature in this numerical study is that the material here is characterized by…

Abstract

Purpose

As the normality concept for frictional dilatant material has a serious drawback, the key feature in this numerical study is that the material here is characterized by elastic-viscoplastic constitutive relation with plastic non-normality effect for two different hardness functions. The paper aims to discuss this issue.

Design/methodology/approach

Quasi-static, mode I plane strain crack tip fields have been investigated for a plastically compressible isotropic hardening–softening–hardening material under small-scale yielding conditions. Finite deformation, finite element calculations are carried out in front of the crack with a blunt notch. For comparison purpose a few results of a hardening material are also provided.

Findings

The present numerical calculations show that crack tip deformation and the field quantities near the tip significantly depend on the combination of plastic compressibility and slope of the hardness function. Furthermore, the consideration of plastic non-normality flow rule makes the crack tip deformation as well as the field quantities significantly different as compared to those results when the constitutive equation exhibits plastic normality.

Originality/value

To the best of the authors’ knowledge, analyses, related to the constitutive relation exhibiting plastic non-normality in the context of plastic compressibility and softening (or softening hardening) on the near tip fields, are not explored in the literature.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 July 2006

Roman Kaczyński and Leongard I. Pogodaev

The purpose of this paper is to analyse the phenomenon of wear resistance of some metals and alloys with allowance for the stiffness of their stressed‐strained state of the…

Abstract

Purpose

The purpose of this paper is to analyse the phenomenon of wear resistance of some metals and alloys with allowance for the stiffness of their stressed‐strained state of the surface.

Design/methodology/approach

An original criterion (in the form of limiting deformation power density) of wear resistance on the basis of structure‐energy theory of friction is proposed. Experimental data on the wear resistance are generalized using the criterion for the conditions of hydroabrasive, impact‐abrasive and cavitational erosion.

Findings

The dependence of the criterion on stiffness coefficient of the stressed‐strained state of the surface of materials is demonstrated. It has been found that an increase of the stiffness results in the reduction in the energy capacity and wear resistance of both metals and alloys investigated.

Practical implications

The structure‐energy criterion can be used for choosing suitable frictional materials and to compare and estimate the theoretical considerations with experimental data.

Originality/value

The proposed structure‐energy approach allows systemizing the results of our analyses and the experimental data.

Details

Industrial Lubrication and Tribology, vol. 58 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 December 2020

Junzhou Yang, Jianjun Wu, Qianwen Zhang, Yinxiang Ren, Han Ruolan and Kaiwei Wang

With the discussion on the linear relationship of determined material parameters, this study aims to propose a new method to analyze the deformation mechanism.

Abstract

Purpose

With the discussion on the linear relationship of determined material parameters, this study aims to propose a new method to analyze the deformation mechanism.

Design/methodology/approach

A modified constitutive model based on the hyperbolic sine Arrhenius equation has been established, which is applied to describe the flow behavior of Ti-6Al-4V alloy during the superplastic forming (SPF).

Findings

The modified constitutive model in this work has a good ability to describe the flow behavior for Ti-6Al-4V in SPF. Besides, a deformation map of titanium material is obtained based on the parameters. As the supplement, finite element models of high-temperature tensile tests are carried out as the application of the constitutive model.

Originality/value

The relationship between constitutive model parameters and forming mechanism is established, which is a new angle in rheological behavior research and constitutive model analysis.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 January 2011

Stoyan Stoyanov, Tim Tilford, Farid Amalou, Scott Cargill, Chris Bailey and Marc Desmulliez

Nano‐imprint forming (NIF) is a manufacturing technology capable of achieving high resolution, low‐cost and high‐throughput fabrication of fine nano‐scale structures and patterns…

Abstract

Purpose

Nano‐imprint forming (NIF) is a manufacturing technology capable of achieving high resolution, low‐cost and high‐throughput fabrication of fine nano‐scale structures and patterns. The purpose of this paper is to use modelling technologies to simulate key process steps associated with the formation of patterns with sub‐micrometer dimensions and use the results to define design rules for optimal imprint forming process.

Design/methodology/approach

The effect of a number of process and pattern‐related parameters on the quality of the fabricated nano‐structures is studied using non‐linear finite element analysis. The deformation process of the formable material during the mould pressing step is modelled using contact analysis with large deformations and temperature dependent hyperelastic material behaviour. Finite element analysis with contact interfaces between the mould and the formable material is utilised to study the formation of mechanical, thermal and friction stresses in the pattern.

Findings

The imprint pressure, temperature and the aspect ratio of grooves which define the pattern have significant effect on the quality of the formed structures. The optimal imprint pressure for the studied PMMA is identified. It is found that the degree of the mould pattern fulfilment as function of the imprint pressure is non‐linear. Critical values for thermal mismatch difference in the CTE between the mould and the substrate causing thermally induced stresses during cooling stage are evaluated. Regions of high stresses in the pattern are also identified.

Originality/value

Design rules for minimising the risk of defects such as cracks and shape imperfections commonly observed in NIF‐fabricated nano‐structures are presented. The modelling approach can be used to provide insights into the optimal imprint process control. This can help to establish further the technology as a viable route for fabrication of nano‐scale structures and patterns.

Details

Engineering Computations, vol. 28 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1989

D.E. Riemer

This paper introduces thermal‐stress analysis methods which follow electrical engineering procedures. The spring constant or c‐value is found to be related to the electrical…

Abstract

This paper introduces thermal‐stress analysis methods which follow electrical engineering procedures. The spring constant or c‐value is found to be related to the electrical impedance, combining dimensions and material characteristics in a performance parameter which simplifies calculations. Voltage is used to represent thermal deformation, and thermal forces are modelled as currents. Relationships equivalent to Ohm's Law are applied to calculate thermal stresses in leads or traces of surface‐mount assemblies. The thermal performance of laminates, e.g., thermal expansion coefficients of interconnect boards with a restraining core, and the thermal stresses in the bonded layers, are derived from the analysis of an electrical network which represents the composite structure. The method provides visual concepts which facilitate a first‐order solution of engineering problems related to thermal stress.

Details

Soldering & Surface Mount Technology, vol. 1 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 25 January 2008

Daiva Juodsnukytė, Virginija Daukantienė and Matas Gutauskas

This paper aims to develop the methodology for the imitation of exploitation conditions of textile products as well as to determine the exploitation peculiarities of…

Abstract

Purpose

This paper aims to develop the methodology for the imitation of exploitation conditions of textile products as well as to determine the exploitation peculiarities of high‐performance fabrics for outdoor clothing producible in Lithuania.

Design/methodology/approach

Static‐ and dynamic‐cyclic loading was applied for the imitation of exploitation conditions as well as for the investigation of the changes in specimen geometrical parameters.

Findings

The differences in the parameters of textile material stability determined under dry and wet cyclic specimen deformation were determined. The investigation results presented show that the parameters of air permeability can be used for the determination of changes in textile product shapes due to their cyclic washing as well as to the other kinds of wet technological treatment, especially in these cases when the small areas of product material are deformed.

Practical implications

The problems concerned with the methodology for the evaluation of exploitation stability of high‐performance fabrics (woven and knitted) for outdoor clothing are analyzed in this research.

Originality/value

In most cases, the exploitation behaviour of textile materials is investigated under uniaxial or static biaxial deformation. For better imitation of real exploitation conditions of textiles the new testing methodology based on two testing methods was established (original device for punch deformation working in creep mode as well as using wet and dry specimens; device ARRV for cyclic fatigue).

Details

International Journal of Clothing Science and Technology, vol. 20 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 June 2001

Eugenija Strazdiene and Matas Gutauskas

The goal of this research work was experimental investigation and evaluation of biaxial punch deformation processes of anisotropic textile materials. The investigation was aimed…

Abstract

The goal of this research work was experimental investigation and evaluation of biaxial punch deformation processes of anisotropic textile materials. The investigation was aimed to solving the following problems: tofind a new criterion for textile behaviour evaluation in punch loading; to evaluate theeffect of material anisotropy for the geometry offormed shell; to determine the straindistribution in anisotropic shell. The experimental data of X‐ray diffraction analysis showed that friction at specimen/punch contact, which earlier was ignored, has a significant effect upon the parameters of the punching process.

Details

International Journal of Clothing Science and Technology, vol. 13 no. 3/4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 October 2004

Roman Kaczyński and Leongard I. Pogodaev

This paper describes the elastic state of heterogenous materials within the framework of the mechanics of heterogenous continua. Failure condition of a two‐phase material is…

Abstract

This paper describes the elastic state of heterogenous materials within the framework of the mechanics of heterogenous continua. Failure condition of a two‐phase material is formulated and the dependencies of hydroabrasive and cavitational wear of steel on the spacing of the inclusions of martensite in steels with ferritic‐cementitic and austenitic structures are established. The dependence of the wear resistance criterion on the stress, distribution density and austenitic grain diameter is also presented. The results made it possible to develop an effective structure‐energy model to describe wear processes of materials and coatings.

Details

Industrial Lubrication and Tribology, vol. 56 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 8000