Search results

1 – 10 of over 4000
Article
Publication date: 5 May 2020

Congliang Fei, Pengfei Xiahou and Fujun Wang

This study aims to focus on the grid connected inverter.

Abstract

Purpose

This study aims to focus on the grid connected inverter.

Design/methodology/approach

The grid connected inverter for harmonic suppression was designed, the topological structure of the inverter and the design of LCL filter were analyzed, then a PIR controller was proposed and finally simulation and experiment were carried out.

Findings

The simulation results showed that the distortion rates of the 5th, 7th and 11th harmonics under PIR control were 0.14%, 0.13% and 0.06%, respectively, which were significantly lower than that under PI control. The system test results also showed that the current waveform under PI control was rough and total harmonic distortion (THD) content was 3.8%; under PIR control, the grid connected current waveform was relatively smooth, with fewer spikes and burrs, and the THD content was 1.9%, indicating that the harmonics were effectively suppressed.

Originality/value

The experimental results verify that the inverter and PIR controller designed in this study are effective for harmonic suppression. This work makes some contributions to the improvement of the effect of harmonic suppression and promotion of the better application of grid connected inverter.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 13 November 2009

Zbigniew Gmyrek

The purpose of this paper is to discuss a new method of iron loss estimation under pulse width modulation (PWM) converter supply. The proposed method concerns the longitudinal…

Abstract

Purpose

The purpose of this paper is to discuss a new method of iron loss estimation under pulse width modulation (PWM) converter supply. The proposed method concerns the longitudinal magnetisation.

Design/methodology/approach

A novel method of iron loss estimation applies values of iron losses that come from a single higher harmonic coexisting with a DC‐bias field. This method considers non‐linearity of ferromagnetic. Results of estimation are validated using experimental results.

Findings

The paper formulates that the dependence of iron losses come from harmonics, on DC‐bias field. Moreover, it formulates possibilities of their utilization to iron loss estimation in case of deformed flux. On the other hand, it discusses the influence of DC‐bias field on static hysteresis and classical eddy current losses.

Research limitations/implications

Experimental verification will still be needed as to the accuracy of the proposed model and applicability to various magnetic materials.

Practical implications

The paper provides an easy mathematical method of iron loss estimation, under PWM voltage supply.

Originality/value

The paper explains how to use an analytical method and results of iron losses come from single harmonics, obtained under coexistence with DC‐bias field, to iron loss estimation in case of longitudinal magnetisation where deformed magnetic flux occurs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 May 2017

Irina Yu. Kruchinina, Yuvenaliy Khozikov, Alexandr Liubimtsev and Valentina Paltceva

The purpose of this paper is the development of a new numerical method for the calculation of the air-gap magnetic flux harmonics in synchronous machines with permanent magnet…

Abstract

Purpose

The purpose of this paper is the development of a new numerical method for the calculation of the air-gap magnetic flux harmonics in synchronous machines with permanent magnet (PM) excitation. The harmonic analysis results are used as input data for the eddy-current loss calculation and for the rotor heating evaluation.

Design/methodology/approach

The method is based on the finite element analysis (FEA). The model takes into account toothed stator design, rotor asymmetrical magnetic reluctance and saturation. At first, a series of static DC magnetic (magnetostatic) simulations is run. Each problem corresponds to specific rotor position and the momentary stator winding currents. The Fourier analysis performed for each problem yields the harmonic spectrum variation in time. Then, a series of AC magnetic (time-harmonic) simulations is run. Each problem corresponds to a specific harmonic. The result is the eddy-current losses distribution. After total loss is calculated, the heat transfer analysis is conducted.

Findings

The analysis reveals that 90 per cent of losses are located in the sleeve that holds PMs together. Rotor eccentricity brings even harmonics of low magnitude that have little impact on heating.

Originality/value

In general, the study requires transient electromagnetic analysis with motion. The purposed method allows to simplify the problem. The method is based on static and quasi-static (time-harmonic) problems simulation. It is fast and highly automated. The method allows simultaneous taking into account of tooth-order harmonics, stator winding harmonics and eccentricity for heating calculation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

Shanming Wang, Yonghong Xia, Shaogang Huang, Arui Qiu and Xiangheng Wang

In order to keep the advantages of PM generators and eliminate its disadvantage – difficulty in regulating the magnetic field, hybrid excitation is an effective way. The purpose…

Abstract

Purpose

In order to keep the advantages of PM generators and eliminate its disadvantage – difficulty in regulating the magnetic field, hybrid excitation is an effective way. The purpose of this paper is to propose a novel way to achieve hybrid excitation by use of tooth harmonic field.

Design/methodology/approach

Unlike weakening the tooth harmonics field and EMF in traditional machines, in this paper the tooth harmonics field is proposed to form a novel hybrid excitation permanent magnet synchronous generator (HEPMSG).

Findings

The generation mechanism of tooth harmonic electromotive force (EMF) of rotor winding is introduced, and its influencing factors are discussed in detail. The matching design of tooth harmonic winding and field winding for maximum output field current of tooth harmonic excitation system is analyzed.

Practical implications

This machine can achieve not only effective adjustment of the air-gap magnetic field, but also elimination of the brushes and slip rings.

Originality/value

Unlike weakening the tooth harmonics field and EMF in traditional machines, in this paper the tooth harmonics filed is proposed to form a novel hybrid excitation PM synchronous generator. This machine can achieve not only effective adjustment of the air-gap magnetic field, but also elimination of the brushes and slip rings.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 September 2018

Markus Wick, Sebastian Grabmaier, Matthias Juettner and Wolfgang Rucker

The high computational effort of steady-state simulations limits the optimization of electrical machines. Stationary solvers calculate a fast but less accurate approximation…

Abstract

Purpose

The high computational effort of steady-state simulations limits the optimization of electrical machines. Stationary solvers calculate a fast but less accurate approximation without eddy-currents and hysteresis losses. The harmonic balance approach is known for efficient and accurate simulations of magnetic devices in the frequency domain. But it lacks an efficient method for the motion of the geometry.

Design/methodology/approach

The high computational effort of steady-state simulations limits the optimization of electrical machines. Stationary solvers calculate a fast but less accurate approximation without eddy-currents and hysteresis losses. The harmonic balance approach is known for efficient and accurate simulations of magnetic devices in the frequency domain. But it lacks an efficient method for the motion of the geometry.

Findings

The three-phase symmetry reduces the simulated geometry to the sixth part of one pole. The motion transforms to a frequency offset in the angular Fourier series decomposition. The calculation overhead of the Fourier integrals is negligible. The air impedance approximation increases the accuracy and yields a convergence speed of three iterations per decade.

Research limitations/implications

Only linear materials and two-dimensional geometries are shown for clearness. Researchers are encouraged to adopt recent harmonic balance findings and to evaluate the performance and accuracy of both formulations for larger applications.

Practical implications

This method offers fast-frequency domain simulations in the optimization process of rotating machines and so an efficient way to treat time-dependent effects such as eddy-currents or voltage-driven coils.

Originality/value

This paper proposes a new, efficient and accurate method to simulate a rotating machine in the frequency domain.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 August 1958

P.R. Payne

The elimination of the retreating blade stall speed limitation for helicopters by means of an appropriately programmed feathering input is studied for the general case of a rigid…

Abstract

The elimination of the retreating blade stall speed limitation for helicopters by means of an appropriately programmed feathering input is studied for the general case of a rigid flapping blade with hinge constraint (thus making the results applicable to conventional, offset‐hinged or cantilevered rotor blades). It is concluded that second harmonic feathering alone will not be particularly effective in delaying the stall limit, but that a suitable programme of several higher harmonic inputs will enable the retreating blade stall limit to be pushed beyond the advancing blade compressibility limit. In the course of the investigation generalized equations were developed for blade flapping to the nth harmonic under the influence of feathering to the nth harmonic. The resultant matrix is symmetrical and checks with the few available limit cases derived by other workers. Because of loose coupling in the matrix generalized equations can be derived giving the effect of any particular harmonic of feathering upon flapping and angle of attack distribution around the disk. The effect of higher harmonic feathering upon rotor stability derivatives is not discussed in this text, but examination of the equations indicates that an improvement in stability could be obtained by the application of second harmonic control. This paper does not discuss the mechanical details of obtaining a higher harmonic feathering input, nor is it suggested that this is necessarily the best means of obtaining higher forward speeds. In certain cases it may be the only means however.

Details

Aircraft Engineering and Aerospace Technology, vol. 30 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 12 March 2024

Salma Benharref, Vincent Lanfranchi, Daniel Depernet, Tahar Hamiti and Sara Bazhar

The purpose of this paper is to propose a new method that allows to compare the magnetic pressures of different pulse width modulation (PWM) strategies in a fast and efficient way.

Abstract

Purpose

The purpose of this paper is to propose a new method that allows to compare the magnetic pressures of different pulse width modulation (PWM) strategies in a fast and efficient way.

Design/methodology/approach

The voltage harmonics are determined using the double Fourier integral. As for current harmonics and waveforms, a new generic model based on the Park transformation and a dq model of the machine was established taking saturation into consideration. The obtained analytical waveforms are then injected into a finite element software to compute magnetic pressures using nodal forces.

Findings

The overall proposed method allows to accelerate the calculations and the comparison of different PWM strategies and operating points as an analytical model is used to generate current waveforms.

Originality/value

While the analytical expressions of voltage harmonics are already provided in the literature for the space vector pulse width modulation, they had to be calculated for the discontinuous pulse width modulation. In this paper, the obtained expressions are provided. For current harmonics, different models based on a linear and a nonlinear model of the machine are presented in the referenced papers; however, these models are not generic and are limited to the second range of harmonics (two times the switching frequency). A new generic model is then established and used in this paper after being validated experimentally. And finally, the direct injection of analytical current waveforms in a finite element software to perform any magnetic computation is very efficient.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2022

Zeynep Bala Duranay

This study aims to present the experimental results for neural network (NN) based harmonic elimination technique for single-phase inverters.

Abstract

Purpose

This study aims to present the experimental results for neural network (NN) based harmonic elimination technique for single-phase inverters.

Design/methodology/approach

Switching angles applied to power switches are determined using the NN technique based on the harmonics to be suppressed. Thus, besides controlling the output voltage, NN controller provides elimination of predetermined harmonics from output signal of single-phase inverter. Simulation and experimental results for the elimination of 15 and 20 low-order harmonics are presented. The switching angle values calculated by a NN , fuzzy logic and Newton–Raphson are compared for elimination of first 10 harmonics.

Findings

This paper provides the harmonic spectra showing that first 15 and 20 harmonics are suppressed from output signal. The NN is proved to give closest results to angle values calculated by Newton–Raphson’s numerical solution method.

Originality/value

The value of this paper is to verify the simulation results with the experimental result for the elimination of 15 and 20 low-order harmonics. Both the simulation and the experimental results demonstrate the success of the NN based selected harmonic elimination.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 May 2022

Guozhen Zhang, Rui Nie, Jikai Si, Xiaohui Feng and Changli Wang

This study aims to unveil the generation mechanism of the thrust force in a tubular flux-switching permanent magnet (PM) linear (TFSPML) machine; the operation principle of the…

Abstract

Purpose

This study aims to unveil the generation mechanism of the thrust force in a tubular flux-switching permanent magnet (PM) linear (TFSPML) machine; the operation principle of the TFSPML machine is analyzed.

Design/methodology/approach

First, the air-gap flux density harmonic characteristics excited by PMs and armature windings are investigated and summarized based on a simple magnetomotive force (MMF)-permeance model. Then, the air-gap field modulation theory is applied in analyzing the air-gap flux density harmonics that contribute to the electromagnetic force. In addition, a simple method for separating the end force of the TFSPML machine is proposed, which is a significant foundation for the comprehensive analysis of this type of machine. As a result, the operation principle of the TFSPML machine is thoroughly revealed.

Findings

The analysis shows that the average electromagnetic force is mainly contributed by the air-gap dominant harmonics, and the thrust force ripple is mainly caused by the end force.

Originality/value

In this paper, the operation principle of the TFSPML machine is analyzed from the perspective of air-gap field modulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 2022

Oleksii V. Bialobrzheskyi, Dmytro RodKin and Andrii Gladyr

At the current stage of electrical technology development, it is relevant to take into account the quality of electrical energy. It can be implemented if an assessed energy…

Abstract

Purpose

At the current stage of electrical technology development, it is relevant to take into account the quality of electrical energy. It can be implemented if an assessed energy quality indicator is available. The amount of electrical energy is determined by active power, which is transmitted over a certain time period. In some cases, reactive power is included in the metering system. The distortion power is justifiably criticized and is not taken into account. The purpose of this paper consists in the substantiation of the indicator of the distortion of the periodic polyharmonic current electrical energy power, by separating from the instantaneous power such harmonics, which formed by same frequencies current and voltage harmonics.

Design/methodology/approach

Using the method of calculating linear polyharmonic current circuits, the following quantities are identified in instantaneous power: active, reactive and apparent powers of each harmonic. These components are known from references as canonical.

Findings

By the method of instantaneous power harmonic analysis, the components formed by current and voltage harmonics of the same frequency and different frequencies are distinguished.

Research limitations/implications

The RMS value of the instantaneous power due to current and voltage harmonics of different frequencies is justified in the work. This quantity allows you to distinguish the instantaneous power distortion level in comparison with the existing quantity.

Practical implications

The results can be used to assess the level of instantaneous power distortion level in commercial and technical metering systems.

Originality/value

The definition of instantaneous power distortion by extracting the canonical components from it and determining the root mean square value of the remainder is proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 4000