Search results

1 – 10 of 40
Article
Publication date: 13 May 2022

Guozhen Zhang, Rui Nie, Jikai Si, Xiaohui Feng and Changli Wang

This study aims to unveil the generation mechanism of the thrust force in a tubular flux-switching permanent magnet (PM) linear (TFSPML) machine; the operation principle of the…

Abstract

Purpose

This study aims to unveil the generation mechanism of the thrust force in a tubular flux-switching permanent magnet (PM) linear (TFSPML) machine; the operation principle of the TFSPML machine is analyzed.

Design/methodology/approach

First, the air-gap flux density harmonic characteristics excited by PMs and armature windings are investigated and summarized based on a simple magnetomotive force (MMF)-permeance model. Then, the air-gap field modulation theory is applied in analyzing the air-gap flux density harmonics that contribute to the electromagnetic force. In addition, a simple method for separating the end force of the TFSPML machine is proposed, which is a significant foundation for the comprehensive analysis of this type of machine. As a result, the operation principle of the TFSPML machine is thoroughly revealed.

Findings

The analysis shows that the average electromagnetic force is mainly contributed by the air-gap dominant harmonics, and the thrust force ripple is mainly caused by the end force.

Originality/value

In this paper, the operation principle of the TFSPML machine is analyzed from the perspective of air-gap field modulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2017

Behrooz Rezaeealam and Farhad Rezaee-Alam

The purpose of this paper is to present an improved conformal mapping (ICM) method that simultaneously considers the influence of relative recoil permeability of PMs, the armature…

Abstract

Purpose

The purpose of this paper is to present an improved conformal mapping (ICM) method that simultaneously considers the influence of relative recoil permeability of PMs, the armature reaction, the stator slotting, and the magnetic saturation on determination of the PM operating point in its different parts.

Design/methodology/approach

The ICM method is a time-effective method that considers the magnetic saturation by suitable increments in air-gap length under each tooth and also the width of slot openings. In this paper, the analytical and numerical conformal mappings such as the Schwarz-Christoffel (SC) mapping are used for magnetic field analysis due to the permanent magnets and the armature reaction in one slotted air gap. The field solution in the slotted air gap is obtained through the modulation of field solution in one slotless air-gap using the complex air-gap permeance.

Findings

The ICM method can consider the magnetic saturation in different electric loadings, and also the variation of PM operating points in its different parts.

Practical implications

The ICM method is applied to one surface mounted permanent magnet (SMPM) motor and is verified by comparing with the corresponding results obtained through finite element method (FEM), and frozen permeability finite element method (FP-FEM).

Originality/value

This paper presents an ICM method with a new technique for saturation effect modeling, which can be used to separate and calculate the on-load components of air-gap field and torque.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Y. Oner, Z.Q. Zhu, L.J. Wu and X. Ge

Due to high electromagnetic torque at low speed, vernier machines are suitable for direct-drive applications such as electric vehicles and wind power generators. The purpose of…

Abstract

Purpose

Due to high electromagnetic torque at low speed, vernier machines are suitable for direct-drive applications such as electric vehicles and wind power generators. The purpose of this paper is to present an exact sub-domain model for analytically predicting the open-circuit magnetic field of permanent magnet vernier machine (PMVM) including tooth tips. The entire field domain is divided into five regions, viz. magnets, air gap, slot openings, slots, and flux-modulation pole slots (FMPs). The model accounts for the influence of interaction between PMs, FMPs and slots, and radial/parallel magnetization.

Design/methodology/approach

Magnetic field distributions for slot and air-gap, flux linkage, back-EMF and cogging torque waveforms are obtained from the analytical method and validated by finite element analysis (FEA).

Findings

It is found that the developed sub-domain model including tooth tips is very accurate and is applicable to PMVM having any combination of slots/FMPs/PMs.

Originality/value

The main contributions include: accurate sub-domain model for PMVM is proposed for open-circuit including tooth-tip which cannot be accounted for in literature; the model accounts the interaction between flux modulation pole (FMP) and slot; developed sub-domain model is accurate and applicable to any slot/FMP/PM combinations; and it has investigated the influence of FMP/slot opening width/height on cogging torque.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 June 2007

Wolfgang Hafla, André Buchau, Wolfgang M. Rucker, Andreas Weinläder and Benjamin Klotz

Aims to show that efficiency and accuracy of integral equation methods (IEMs) in combination with the fast multipole method for the design of a novel magnetic gear.

Abstract

Purpose

Aims to show that efficiency and accuracy of integral equation methods (IEMs) in combination with the fast multipole method for the design of a novel magnetic gear.

Design/methodology/approach

A novel magnetic gear was developed. Magnetic fields and torque of the gear were simulated based on IEMs. The fast multipole method was applied to compress the matrix of the belonging linear system of equations. A computer cluster was used to achieve numerical results within an acceptable time. A three‐dimensional post‐processing and visualization of magnetic fields enables a deep understanding of the gear.

Findings

IEMs are very well suited for the numerical analysis of a magnetic gear. Especially, the treatment of the air gap between the rotating components, which move with significant varying velocities, is relatively easy. Furthermore, a correct computation and visualization of flux lines is possible. A magnetic gear is advantageous for high rotational velocities.

Research limitations/implications

A quasi static numerical simulation has sufficed for an understanding of the principle of the magnetic gear and for the development of a prototype.

Practical implications

IEMs are very suitable for the analysis of complex problems with moving parts. Nowadays, the efficiency is very good even for large problems, since matrix compression techniques are well‐engineered.

Originality/value

The design of a novel magnetic gear is discussed. Well‐known techniques like IEMs, fast multipole method and parallel computing are combined to solve a very large and complex problem.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Y. Oner, Z.Q. Zhu, L. J. Wu and X. Ge

An analytical sub-domain model is developed for predicting the armature magnetic field in permanent magnet vernier machine (PMVM) which has either non-overlapping or overlapping…

Abstract

Purpose

An analytical sub-domain model is developed for predicting the armature magnetic field in permanent magnet vernier machine (PMVM) which has either non-overlapping or overlapping windings. The developed model accounts for tooth-tips and flux modulation pole slots (FMPs). The paper aims to discuss these issues.

Design/methodology/approach

It is obtained by solving Poisson’s and Laplace’s equations in polar coordinates for each sub-domain, i.e. air gap, slots, slot openings at tooth-tips and FMP slots. Armature reaction field distributions in slots, slot openings FMPs, air-gap and magnet region and winding inductances are obtained from the analytical method and compared by finite element analysis.

Findings

It is found that the developed model can be employed to accurately predict the armature field and winding inductance for any combination of slots/FMPs/permanent magnets. In addition, it is observed that the winding inductance is high which results in significant armature reaction and poor power factor in PMVM.

Originality/value

The main contributions include: first, accurate sub-domain model for PMVM is proposed for armature reaction which is not addressed in literature; second, the model accounts the interaction between FMP and slot; and finally, developed sub-domain model is also used for inductance calculation.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 April 2022

Ali Moghimi, Mahmood Hosseini Aliabadi and Hassan Feshki Farahani

This paper aims to introduce a new structure for coaxial magnetic gears.

Abstract

Purpose

This paper aims to introduce a new structure for coaxial magnetic gears.

Design/methodology/approach

The study discusses the design and electromagnetic modeling of a triple-speed coaxial magnetic gear (TSCMG) for three different levels of torques in special applications such as wind energy conversion and electrical vehicles. The proposed TSCMG consists of inner, middle and outer rotor, which has one rotor more than its conventional counterpart. The suggested TSCMG’s related equations such as transform ratio and torque are calculated, then TSCMG is simulated in a finite element environment. A comprehensive study has been done on TSCMG, and results are compared with two other magnetic gears with the same volume but two speeds.

Findings

The obtained results show that the proposed structure for TSCMGs is significantly practical and applicable in higher ranges of torques. Finally, an experimental TSCMG is prototyped to verify the results.

Originality/value

The achievements are excellent and confirm that TSCMG can be used as powerful equipment in a wide range of application like permanent wind turbines to generate electricity in 24 h per every single day.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 September 2008

Jean Le Besnerais, Vincent Lanfranchi, Michel Hecquet, Pascal Brochet and Guy Friedrich

The purpose of this paper is to apply a fast analytical model of the acoustic behaviour of pulse‐width modulation (PWM) controlled induction machines to a fractional‐slot winding…

1277

Abstract

Purpose

The purpose of this paper is to apply a fast analytical model of the acoustic behaviour of pulse‐width modulation (PWM) controlled induction machines to a fractional‐slot winding machine, and to analytically clarify the interaction between space harmonics and time harmonics in audible electromagnetic noise spectrum.

Design/methodology/approach

A multilayer single‐phase equivalent circuit calculates the stator and rotor currents. Air‐gap radial flux density, which is supposed to be the only source of acoustic noise, is then computed with winding functions formalism. Mechanical and acoustic models are based on a 2D ring stator model. A method to analytically derive the orders and frequencies of most important vibration lines is detailed. The results are totally independent of the supply strategy and winding type of the machine. Some variable‐speed simulations and tests are run on a 700 W fractional‐slot induction machine in sinusoidal case as a first validation of theoretical results.

Findings

The influence of both winding space harmonics and PWM time harmonics on noise spectrum is exposed. Most dangerous orders and frequencies expressions are demonstrated in sinusoidal and PWM cases. For traditional integral windings, it is shown that vibration orders are necessarily even. When the stator slot number is not even, which is the case for fractional windings, some odd order deflections appear: the radial electromagnetic power can therefore dissipate as vibrations through all stator deformation modes, leading to a potentially lower noise level at resonance.

Research limitations/implications

The analytical research does not consider saturation and eccentricity harmonics which can play a significant role in noise radiation.

Practical implications

The analytical model and theoretical results presented help in designing low‐noise induction machines, and diagnosing noise or vibration problems.

Originality/value

The paper details a fully analytical acoustic and electromagnetic model of a PWM fed induction machine, and demonstrate the theoretical expression of main noise spectrum lines combining both time and space harmonics. For the first time, a direct comparison between simulated and experimental vibration spectra is made.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 April 2006

Herbert De Gersem and Thomas Weiland

To propose an air‐gap element for electrical machine simulation which accounts for static and dynamic rotor eccentricity.

Abstract

Purpose

To propose an air‐gap element for electrical machine simulation which accounts for static and dynamic rotor eccentricity.

Design/methodology/approach

The air‐gap element technique is extended to account for a non‐centered rotor. The consistency, stability and convergence of the discretisation error are studied. A specialized efficient solution technique combining the conjugate gradient algorithm with fast Fourier transforms is developed.

Findings

The eccentric air‐gap technique offers better discretisation properties than the classical techniques based on remeshing. Thanks to the specialized solver, the computation times remain comparable.

Originality/value

The introduction of eccentricity in the air‐gap element used for finite element electrical machine simulation is a new development.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 November 2023

Cheng Peng, He Cheng, Tong Zhang, Jing Wu, Fandi Lin and Jinglong Chu

This paper aims to further develop stator permanent magnet (PM) type memory machines by providing generalized design guidelines for double-stator memory machines (DSMMs) with…

54

Abstract

Purpose

This paper aims to further develop stator permanent magnet (PM) type memory machines by providing generalized design guidelines for double-stator memory machines (DSMMs) with hybrid PMs. This paper discusses the design experience of DSMMs and presents a comparative study of radial magnetization (RM) and circumferential magnetization (CM) types.

Design/methodology/approach

It begins with an introduction to RM and CM operating principles and magnetization mechanisms. Then, a comparative study is conducted for one of the RM-DSMM rotor pole pairs, inner and outer stator clamping angles and low coercive force PMs thickness. Finally, the two machines’ finite element simulation performance is compared. The validity of the proposed machine structure is demonstrated.

Findings

In this paper, the double-stator structure is extended to parallel hybrid PM memory machines, and two novel DSMMs with RM and CM configurations are proposed. Two types of DSMMs have PMs and magnetizing windings on the inner stator and armature windings on the outer stator. The main difference between the two is the arrangement of PMs on the inner stator.

Originality/value

Conventional stator PM memory machines have geometrical space conflicts between the PM and armature windings. The proposed double-stator structure can alleviate these conflicts and increase the torque density accordingly. In addition, this paper contributes to comparing the arrangement of hybrid PMs for DSMMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 40