Search results

1 – 10 of 99
Article
Publication date: 24 January 2023

N. Dhanunjayarao Borra and Venkata Swamy Naidu Neigapula

Shape memory materials are functional materials having a good number of applications due to their unique features of programmable material technology such as self-stretching…

Abstract

Purpose

Shape memory materials are functional materials having a good number of applications due to their unique features of programmable material technology such as self-stretching, self-assembly and self-tightening. Advancements in today’s technology led to the easy fabrication of such novel materials using 3D printing techniques. When an external stimulus causes a 3D printed specimen to change shape on its own, this process is known as 4D printing. This study aims to investigate the effect of graphene nano platelet (GNPs) on the shape memory behaviour of shape memory photo polymer composites (SMPPCs) and to optimize the shape-changing response by using the Taguchi method.

Design/methodology/approach

SMPPCs are synthesized by blending different weight fractions (Wt.%) of flexible or soft photopolymer (FPP) resin with hard photopolymer (HPP) resin, then reinforced with GNPs at various Wt.% to the blended PP resin, and then fabricated using masked stereolithography (MSLA) apparatus. The shape memory test is conducted to assess the shape recovery time (T), shape fixity ratio (Rf), shape recovery ratio (Rr) and shape recovery rate (Vr) using Taguchi analysis by constructing an L9 orthogonal array with parameters such as Wt.% of a blend of FPP and HPP resin, Wt.% of GNPs and holding time.

Findings

SMPPCs with A3, B3 and C2 result in a faster T with 2 s, whereas SMPPCs with A1, B1 and C3 result in a longer T with 21 s. The factors A and B are ranked as the most significant in the Pareto charts that were obtained, whereas C is not significant. It can be seen from the heatmap plot that when factors A and B increase, T is decreasing and Vr is increasing. The optimum parameters for T and Vr are A3, B3 and C2 at the same time for Rf and Rr are A1, B3 and C1.

Research limitations/implications

Faster shape recovery results from a higher Wt.% of FPP resin in a blend than over a true HPP resin. This is because the flexible polymer links in FPP resin activate more quickly over time. However, a minimum amount of HPP resin also needs to be maintained because it plays a role in producing higher Rf and Vr. The use of GNPs as reinforcement accelerates the T because nanographene conducts heat more quickly, releasing the temporary shape of the specimen more quickly.

Originality/value

The use of FPP and HPP resin blends, fabricating the 4D-printed SMPPCs specimens with MSLA technology, investigating the effect of GNPs and optimizing the process parameters using Taguchi and the work was validated using confirmation tests and regression analysis, which increases the originality and novelty.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 March 2018

Mohamed Ashour, Alaa Mohamed, Abou Bakr Elshalakany, Tarek Osman and Aly Khatab

The purpose of this paper is to investigate the rheological characteristics of graphene nanoplatelets (GNPs) and hybridized nanocomposite consisting of multi-walled carbon…

Abstract

Purpose

The purpose of this paper is to investigate the rheological characteristics of graphene nanoplatelets (GNPs) and hybridized nanocomposite consisting of multi-walled carbon nanotubes (MWCNTs) and GNPs as an additive on lithium-based grease. The experiments of nanogrease are examined in different values of shear stress, apparent viscosity, temperature and shear rate using Brookfield Programmable Rheometer DV-III ULTRA and characterized by high-resolution transmission electron microscope (HRTEM) and X-ray diffraction (XRD).

Design/methodology/approach

First, GNPs was mixed well with lithium grease using mechanical stirring at 3,500 rpm for 15 min at room temperature to form a homogenous composite at different concentrations (0.5, 1, 1.5, 2 and 2.5 Wt.%). Afterwards, MWCNTs and GNPs are mixed and dispersed well in the lithium grease using a sonication path for 30 min and mechanical stirring at 3,500 rpm for 15 min at 28°C to form a homogenous nanocomposite.

Findings

The results indicated that 1 Wt.% of GNPs is the optimum concentration. Subsequently, the weight percentage of additives varying between MWCNTs and GNPs are tested, and the result indicate that the grease containing GNPs had a 75 per cent increase in shear stress and 93.7 per cent increase in apparent viscosity over ordinary grease.

Originality/value

This work describes the inexpensive and simple fabrication of nanogrease for improving properties of lubricants, which improve power efficiency and extend lifetimes of mechanical equipment.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 January 2023

N. Dhanunjayarao Borra and Venkata Swamy Naidu Neigapula

The tear strength (Ts) is a significant property for any kind of soft polymeric material such as rubber, elastomer, viscoelastic material and its composites, to quantify the…

Abstract

Purpose

The tear strength (Ts) is a significant property for any kind of soft polymeric material such as rubber, elastomer, viscoelastic material and its composites, to quantify the suitability of a material for any shape memory applications. Many times, the soft elastomeric polymer material has to be capable enough to deform to a maximum extent of displacement but at the same time, it has to withstand the maximum load without fail. Along with shape recovery properties (i.e. the ability to recover its shape from programmed to the original), the success of the shape memory cycle is mainly depending on its stiffness and strength. It has to resist tear during stretching (i.e. programming stage) as repeatedly subjected to deformation, and, hence, it is important to study the tear behaviour for shape memory polymers (SMPs) and their composites. The purpose of the work is to investigate the effect of parameters on Ts of 4D printed specimen using Taguchi method.

Design/methodology/approach

The objective of the work is to tailor the Ts of SMPs by reinforcing the graphene nano particles (GNPs) in a blended photopolymer (PP) resin with flexible PP and hard PP resin. In this study, a total of nine experiments were designed based on the L9 orthogonal array (OA) using the design of experiments (DOEs). All the shape memory photopolymer composite’s (SMPPCs) specimens are fabricated using masked stereolithography (MSLA), also known as resin three-dimensional printing (R3DP) technique.

Findings

Specimens are tested using universal testing machine (UTM) for maximum tear force (Fmax) and displacement (δ) caused by tearing the specimen to evaluate the strength against the tear. The results showed that the Wt.% of resin blend highly influenced both Fmax and δ, while GNPs also had an impact on δ. The specimens are offering more tear resistance for those specimens blended with less Wt.% of flexible PP at the same time the specimens enable more δ for those specimens reinforced with 0.3 Wt.% GNPs at 10-s exposure time. The optimum combinations are A1, B1 and C3 for the Fmax and Ts and at the same time A1, B3 and C3 for δ.

Research limitations/implications

To customise the tear resistance of SMPPCs using MSLA 3 D printing, this study suggested a blend of PP resins reinforced with GNPs. This opens up a new path for creating novel, inexpensive multi-functional 4-dimensional (4D) printed parts.

Originality/value

The use of flexible PP and hard PP resin blends, fabricating the SMPPCs specimens using 3 D printed MSLA technology, investigating the effect of GNPs, resin blend and exposure time, optimizing the process parameters using Taguchi and the work were all validated using confirmation tests and regression analysis using test train method, which increases the originality and novelty.

Article
Publication date: 10 October 2023

Dinesh Kumar, Satnam Singh and Surjit Angra

This study aims to investigate the corrosion behavior of stir-cast hybrid aluminum composite reinforced with CeO2 and graphene nanoplatelets (GNPs) nanoparticulates used as…

50

Abstract

Purpose

This study aims to investigate the corrosion behavior of stir-cast hybrid aluminum composite reinforced with CeO2 and graphene nanoplatelets (GNPs) nanoparticulates used as cylinder liner material in the engines (automotive, aerospace and aircraft industries).

Design/methodology/approach

The composites were prepared using the stir-casting technique, and their microstructure and corrosion behavior was evaluated using scanning electron microscopy (SEM) and potentiodynamic polarization test, respectively.

Findings

The results showed that the addition of CeO2 and GNPs improved the corrosion resistance of the composites, and the optimal combination of these two nanoparticles was found to be 3 wt.% CeO2 and 3 wt.% GNPs. The enhanced corrosion resistance was attributed to the formation of a protective layer on the surface of the composite, as well as the effective dispersion and uniform distribution of nanoparticles in the matrix. The 0.031362 was noted as the lowest corrosion rate (mmpy) and was noticed in 94% Al-6061 alloy + (3 Wt.% CeO2 + 3 Wt.% GNPs) sample at room temperature and at elevated temperatures; the corrosion rate (mmpy) was observed as 0.0601 and 0.0636 at 45 °C and 75 °C, respectively.

Originality/value

In the vast majority of the published research publications, either cerium oxide or graphene nanoplatelets were utilized as a single reinforcement or in conjunction with other types of reinforcement such as alumina, silicon carbide, carbon nano-tubes, tungsten carbide, etc., but on the combination of the CeO2 and GNPs as reinforcements have very less literatures with 2 wt.% each only. The prepared hybrid aluminum composite (reinforcing 1 wt.% to 3 wt.% in Al-6061 alloy) was considered for replacing the cylinder liner material in the piston-cylinder arrangement of engines.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 June 2021

Mohammed Gamil, Nagih M. Shaalan and Ahmed Abd El-Moneim

This study aims to present an efficient and reliable graphene nanoplatelets (GNPs)-based temperature sensor.

345

Abstract

Purpose

This study aims to present an efficient and reliable graphene nanoplatelets (GNPs)-based temperature sensor.

Design/methodology/approach

A high-quality dispersion of GNPs was dropped by casting method on platinum electrodes deposited on a polyethylene terephthalate (PET) substrate. The GNPs were characterized by scanning electron microscope, Raman spectroscopy and X-ray diffraction spectra to ensure its purity and quality. The temperature sensing behavior of the fabricated sensor was examined by subjecting it to different temperatures, range from room temperature (RT) to 150 °C.

Findings

Excellent resistance linearity with temperature change was achieved. Temperature coefficient of resistance of the fabricated sensor was calculated as 1.4 × 10–3°C. The sensor also showed excellent repeatability and stability for the measured temperature range. Good response and recovery times were evaluated at all the measured temperatures. With measuring the sensor response, the ambient temperature can be determined.

Originality/value

The present work presents a new simply and low cost fabricated temperature sensor based on GNPs working at a wide temperature range.

Details

Sensor Review, vol. 41 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 May 2023

Göksel Behret, Oguzhan Sahin and Veysel Erturun

The purpose of this study is to investigate the effects of graphene nanoplates (GNPs), and alloying time on aluminum matrix composite. After mixing the powdered materials in the…

Abstract

Purpose

The purpose of this study is to investigate the effects of graphene nanoplates (GNPs), and alloying time on aluminum matrix composite. After mixing the powdered materials in the alloying device, solid samples were formed by sintering. It is thought that the effect of using such a mechanical mixer on GNPs will be investigated and this study will give a perspective on the composites that GNPs will make with Al and its alloys.

Design/methodology/approach

Mechanical alloying (MA) device capable of high-speed shaking (Spex) movement was used and alloying was performed by adding other metal powders into aluminum, which is the matrix material, with the addition of GNPs at three different rates and times. The crystal size and lattice stress parameters were calculated by obtaining the X-ray diffraction (XRD) graphics of the obtained powder mixtures.

Findings

The XRD graphs of the obtained powder mixtures showed that the Al peaks decreased when the MA time increased. When the scanning electron microscopy images of the powder mixtures were examined, it was observed that agglomeration occurred especially in 1 and 1.5 Wt.% graphene reinforced mixtures that were MA for 90 min. The increase in the amount of graphene had a negative effect on the homogeneous distribution. When the Vickers microhardness values of the samples were examined, the hardness value of all samples increased up to the MA time of 45 min, and decreased in the times over 45 min.

Originality/value

The use of GNPs in the mechanical alloying technique and the fact that this technique was performed on the Retsch MM 400 device, which is a Spex type mixer, shows the originality of the study in terms of time and material content.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 October 2015

Mou’ad. A. Tarawneh, L. J. YU, Musab A. Tarawni, Sahrim Hj. Ahmad, O. Al-Banawi and Mohammad A. Batiha

This paper examines the enhancement in the properties of thermoplastic elastomer (TPE) reinforced by graphene nanoplates (GNPs). TPE is a blend of polypropylene (PP), natural…

Abstract

This paper examines the enhancement in the properties of thermoplastic elastomer (TPE) reinforced by graphene nanoplates (GNPs). TPE is a blend of polypropylene (PP), natural rubber (NR) and liquid natural rubber (LNR), which is used as a compatibiliser at a percentage of volume ratio 70:10:20, respectively. Using TPE as the host matrix, TPE/GNPs nanocomposites are processed, and the mechanical, electrical and structural properties are characterised. The results extracted from the tensile and the impact tests showed that the tensile strength, Young’s modulus and the impact strength of the nanocomposites also increased as the filler loading increased until an optimum value of filler loading was reached. Based on the experimental results, GNPs strongly affected the electrical conductivity due to disruption of the GNPs percolated network. It is believed that the high aspect ratio of GNPs is a critical issue concerning the constitution of a special interface region between the GNPs and TPE matrix and the high performance of the composites.

Details

World Journal of Engineering, vol. 12 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 September 2020

Ashish Kumar Srivastava, Brijesh Sharma, Bismin R. Saju, Arpit Shukla, Ambuj Saxena and Nagendra Kumar Maurya

The development of a new class of engineering materials is the current demand for aircraft and automobile companies. In this context metal, composite materials have a widespread…

Abstract

Purpose

The development of a new class of engineering materials is the current demand for aircraft and automobile companies. In this context metal, composite materials have a widespread application in different areas of manufacturing sectors.

Design/methodology/approach

In this paper, an attempt is made to develop the aluminium-based nano metal matrix composite reinforced with graphene nanoparticles (GNP) by using the stir casting method. Different weight percentage (0.4%, 0.8% and 1.2% by weight) of GNPs are used to fabricate metal matrix composites (MMCs). The developed nanocomposites were further validated by density calculation and optical microstructures to discuss the distribution of GNPs. The tensile test was conducted to determine the strength of the developed MMCs and also supported by fractographic analysis. In addition to it, the Rockwell hardness test and impact test (toughness) with fracture analysis were also conducted to strengthen the present work.

Findings

The results reveal the uniform distribution of GNPs into the matrix material. The yield strength and ultimate tensile strength obtained a maximum value of 155.67 MPa and 170.28 MPa, respectively. The hardness value (HRB) is significantly increased and 84 HRB was obtained for the sample with AA1100/0.4% GNP, while maximum hardness value (94 HRB) was obtained for the sample AA1100/1.2% GNP. The maximum value of toughness 14.3 Jules/cm2 is recorded for base alloy AA1100 while increasing the reinforcement percentage, it decreases up to 9.7 Jules/cm2 for AA1100/1.2% GNP.

Originality/value

Graphene nanoparticles are used to develop nanocomposites, which is one of the suitable alternatives for heavy engineering materials such as steels and cast irons. It has improved microstructural and mechanical properties which makes it preferable for many engineering and structural applications.

Details

World Journal of Engineering, vol. 17 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 May 2024

Suehail Aijaz Shah, Manzoor Ahmad Tantray and Jan Mohammad Banday

Durability of concrete can be enhanced by reducing the pore size/volume of pores or by entrapping the pores. This can be achieved by adding concrete admixtures that have particle…

Abstract

Purpose

Durability of concrete can be enhanced by reducing the pore size/volume of pores or by entrapping the pores. This can be achieved by adding concrete admixtures that have particle size finer than cement. In this study, GNP, having particle size much smaller than cement, has been introduced/added to concrete mix to control the pore size in concrete to tape out the contribution of GNP in the durability enhancement of concrete.

Design/methodology/approach

Different concrete mixes, at various water–cement ratios and amounts of graphene, have been manufactured to produce concrete containing three different %ages of GNP, i.e. 0%, 0.05% and 0.1%. To demonstrate the effect on durability of the concrete through the addition of GNP, these concrete samples have been subjected to repeated Freeze-Thaw cycles. Followed by testing after 28 days of curing, including weight loss, water absorption and strength, which are directly related to the durability aspect of concrete.

Findings

It has been observed that the addition of GNP to concrete mixes reduces the weight loss and pore size distribution and enhances tensile and compressive strength of concrete, thereby increasing the durability of concrete in unfavorable circumstances like freeze-thaw i.e. alternate hot and cold weather conditions.

Originality/value

This investigation presents original piece of experimental work conducted on modified concrete (GNP-based concrete). The aim is to construct the civil infrastructure in deep-cold region with increased life span and better performance.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 August 2023

Dinesh Kumar, Surjit Angra and Satnam Singh

This research outlines the development and characterization of advanced composite materials and their potential applications in the aerospace industry for interior applications…

Abstract

Purpose

This research outlines the development and characterization of advanced composite materials and their potential applications in the aerospace industry for interior applications. Advanced composites, such as carbon-fiber-reinforced polymers and ceramic matrix composites, offer significant advantages over traditional metallic materials in terms of weight reduction, stiffness and strength. These materials have been used in various aerospace applications, including aircraft, engines and thermal protection systems.

Design/methodology/approach

The development of design of experiment–based hybrid aluminum composites using the stir-casting technique has further enhanced the performance and cost-effectiveness of these materials. The design of the experiment was followed to fabricate hybrid composites with nano cerium oxide (nCeO2) and graphene nanoplatelets (GNPs) as reinforcements in the Al-6061 matrix.

Findings

The Al6061 + 3% nCeO2 + 3% GNPs exhibited a high hardness of 119.6 VHN. The ultimate tensile strength and yield strength are 113.666 MPa and 73.08 MPa, respectively. A uniform distribution of reinforcement particulates was achieved with 3 Wt.% of each reinforcement in the matrix material, which is analyzed using scanning electron microscopy. Fractography revealed that brittle and ductile fractures caused the failure of the fractured specimens in the tensile test.

Practical implications

The manufactured aluminum composite can be applied in a range of exterior and interior structural parts like wings, wing boxes, motors, gears, engines, antennas, floor beams, etc. The fan case material of the GEnx engine (currently using carbon-fiber reinforcement plastic) for the Boeing 7E7 can be another replacement with manufactured hybrid aluminum composite, which predicts weight savings per engine of close to 120 kg.

Originality/value

The development of hybrid reinforcements, where two or more types of reinforcements are used in combination, is also a novel approach to improving the properties of these composites. Advanced composite materials are known for their high strength-to-weight ratio. If the newly developed composite material demonstrates superior properties, it can potentially be used to replace traditional materials in aircraft manufacturing. By reducing the weight of aircraft structures, fuel efficiency can be improved, leading to reduced operating costs and environmental impact. This allows for a more customized solution for specific application requirements and can lead to further advancements in materials science and technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 99