Search results

1 – 10 of over 4000
To view the access options for this content please click here
Article
Publication date: 1 December 2005

G.T. Alisoy, H.Z. Alisoy and M. Koseoglu

To determine the electrical field E1(t) in spherical and cylindrical gas voids existing in an insulator by considering surface conductivity of gas voids having an…

Abstract

Purpose

To determine the electrical field E1(t) in spherical and cylindrical gas voids existing in an insulator by considering surface conductivity of gas voids having an electrical permittivity of ε1 and conductivity of γ1 for DC and AC situations.

Design/methodology/approach

Analytical expressions satisfying Laplace equation for inside and outside of the cylindrical and spherical gas voids in an insulator located in an external electrical field having a definite time dependent character, have been derived by considering the surface conductivity of the gas void. The coefficients included by these analytical expressions have been determined by utilizing the continuity equation of the current on the surface of the voids.

Findings

It has been demonstrated that the electrical field remains uniform in spherical and cylindrical gas voids when the surface conductivity of gas void has been considered. It has been determined that the contact charging process of different shaped particles has an exponential characteristic, and some expressions have been derived to determine the time constants of this process for practical purposes.

Practical implications

The results have been applied to the problems about contact charging of semi‐spherical and semi‐cylindrical insulated particles located at a charged surface and problems about the calculation of onset discharging voltage of ionization process in dielectric including gas voids.

Originality/value

For spherical and cylindrical gas voids, the onset discharging voltage corresponding to the ionization process occurring in gas voids has increased by increasing the surface conductivity of the void. For the limit value of the surface conductivity, the voids in the insulator behaves like metal particles distributed into the insulator, for this reason, at the outside of the void, especially in the regions where the voids are close to the electrodes and each other, the electrical field will be non‐uniform and will increase. This situation will cause the ignition of the partial discharge and destroy to the insulator.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 8 June 2012

Tony W.H. Sheu, S.H. Kuo and R.K. Lin

A convection‐diffusion‐reaction scheme is proposed in this study to simulate the high gradient electroosmotic flow behavior in microchannels. The equations governing the…

Abstract

Purpose

A convection‐diffusion‐reaction scheme is proposed in this study to simulate the high gradient electroosmotic flow behavior in microchannels. The equations governing the total electric field include the Laplace equation for the effective electrical potential and the Poisson‐Boltzmann equation for the electrical potential in the electric double layer.

Design/methodology/approach

Mixed electroosmotic/pressure‐driven flow in a straight microchannel is studied with the emphasis on the Joule heat in the equations of motion. The nonlinear behaviors resulting from the hydrodynamic, thermal and electrical three‐field coupling and the temperature‐dependent fluid viscosity, thermal conductivity, electrical permittivity, and conductivity of the investigated buffer solution are analyzed.

Findings

The solutions computed from the employed flux discretization scheme for the hydrodynamic, thermal and electric field equations have been verified to have good agreement with the analytical solution. Parametric studies have been carried out by varying the electrical conductivity at the fixed zeta potential and varying the zeta potential at the fixed electrical conductivity.

Originality/value

Investigation is also addressed on the predicted velocity boundary layer and the electric double layer near the negatively charged channel wall.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 20 September 2021

Jared Allison, John Pearce, Joseph Beaman and Carolyn Seepersad

Additive manufacturing (AM) of thermoplastic polymers for powder bed fusion processes typically requires each layer to be fused before the next can be deposited. The…

Abstract

Purpose

Additive manufacturing (AM) of thermoplastic polymers for powder bed fusion processes typically requires each layer to be fused before the next can be deposited. The purpose of this paper is to present a volumetric AM method in the form of deeply penetrating radio frequency (RF) radiation to improve the speed of the process and the mechanical properties of the polymer parts.

Design/methodology/approach

The focus of this study was to demonstrate the volumetric fusion of composite mixtures containing polyamide (nylon) 12 and graphite powders using RF radiation as the sole energy source to establish the feasibility of a volumetric AM process for thermoplastic polymers. Impedance spectroscopy was used to measure the dielectric properties of the mixtures as a function of increasing graphite content and identify the percolation limit. The mixtures were then tested in a parallel plate electrode chamber connected to an RF generator to measure the heating effectiveness of different graphite concentrations. During the experiments, the surface temperature of the doped mixtures was monitored.

Findings

Nylon 12 mixtures containing between 10% and 60% graphite by weight were created, and the loss tangent reached a maximum of 35%. Selective RF heating was shown through the formation of fused composite parts within the powder beds.

Originality/value

The feasibility of a novel volumetric AM process for thermoplastic polymers was demonstrated in this study, in which RF radiation was used to achieve fusion in graphite-doped nylon powders.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 2 October 2019

Oluseyi Moses Ajayi, Wayne Martindale and Mark Swainson

The purpose of this paper is twofold: first, it aims to investigate how salt and sugar reduction in foods due to the pressure from the emerging food regulations will…

Abstract

Purpose

The purpose of this paper is twofold: first, it aims to investigate how salt and sugar reduction in foods due to the pressure from the emerging food regulations will affect the physico-electrical properties (PEPs) of orange juice and tomatoes during a selected PEP-dependent thermal processing. Second, the authors are keen to understand how variations in salt and sugar ingredients will affect the time-temperature processing requirements.

Design/methodology/approach

PEPs of the samples (orange juice and tomatoes) were measured using the KD2 thermal analyser and RS conductivity metre. Both samples with varying salt and sugar levels were subjected to ohmic heating processing using a 10 kW ohmic heater. Dehydration rates and processing times for pasteurisation were obtained.

Findings

Electrical conductivity increases with added salt in tomato puree but decreases with added sugar in orange juice. Statistical evidence confirmed significant changes in heating rates and processing times of tomatoes and orange juice as their relevant salt and sugar levels change. Reduction in salt content in tomato puree led to increase in time and energy for the thermal processes. While reduction in added sugar in orange juice results led to reduction in processing time and energy requirement for the processing operation.

Research limitations/implications

The study is limited to small change in salt and sugar variations in order to reflect recommended limits. There were therefore no significant changes in thermal conductivity for the range investigated. Also this study is focussed on two food products.

Practical implications

Current pressure on the need to reduce salt and sugar in foods necessitates research to increase food processing industry insight into the process and product impacts of such recipe changes, with particular regard to processing efficiency and product safety and quality.

Originality/value

This study represents an attempt to understand the impact of salt and sugar variations on properties and processing requirements of tomato puree and orange juice.

Details

British Food Journal, vol. 122 no. 1
Type: Research Article
ISSN: 0007-070X

Keywords

To view the access options for this content please click here
Article
Publication date: 4 October 2021

Zhen Pan and Fenglian Sun

The purpose of this paper is to design a novel die-attach composite joint for high-temperature die-attach applications based on transient liquid phase bonding. Moreover…

Abstract

Purpose

The purpose of this paper is to design a novel die-attach composite joint for high-temperature die-attach applications based on transient liquid phase bonding. Moreover, the microstructure, shear strength, electrical property, thermal conductivity and aging property of the composite joint were investigated.

Design/methodology/approach

The composite joint was made of microporous copper and Cu3Sn. Microporous copper was immersed into liquid Sn to achieve Sn-microporous copper composite structure for die attachment. By the thermo-compression bonding, the Cu3Sn-microporous copper composite joint with a thickness of 100 µm was successfully obtained after bonding at 350 °C for 5 min under a low pressure of 0.6 MPa.

Findings

After thermo-compression bonding, the resulting interconnection could withstand a high temperature of at most 676 °C, with the entire Sn transforming into Cu3Sn with high remelting temperatures. A large shear strength could be achieved with the Cu3Sn-microporous copper in the interconnections. The formed bondlines demonstrated a good electrical and thermal conductivity owing to the large existing amount of copper in the interconnections. Furthermore, the interconnection also exhibited excellent reliability under high temperature aging at 300 °C.

Originality/value

This die-attach composite joint was suitable for power devices operating under high temperatures or other harsh environments.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

To view the access options for this content please click here
Article
Publication date: 1 October 2006

Ssuwei Chen, Jeremy Murphy, Jason Herlehy, David L. Bourell and Kristin L. Wood

This paper aims to present a new fabrication method for fuel cell current collectors. Demonstration of its usefulness and discussion of its impact on current collector…

Downloads
1386

Abstract

Purpose

This paper aims to present a new fabrication method for fuel cell current collectors. Demonstration of its usefulness and discussion of its impact on current collector design and performance are also given.

Design/methodology/approach

The selective laser sintering (SLS) technique is used to create green parts followed by a high temperature curing process and pressureless infiltration treatment to meet basic part design requirements.

Findings

A material system and process satisfying both manufacturing constraints and product property requirements can be used for fabrication of current collectors via SLS. Relative particle size and composition of the constituents play an important role in successful manufacture of the plates. Strategies to improve electrical conductivity are also discussed.

Originality/value

A new manufacturing method has been developed for the construction of fuel cell current collectors that could generate opportunities for performance enhancement and fuel cell application by eliminating the constraints imposed by traditional fabrication processes.

Details

Rapid Prototyping Journal, vol. 12 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 5 April 2021

Hoda Sabry Othman, Maher A. El-Hashash, S. H. El-Sabbagh, A. A. Ward and Galal A.M. Nawwar

Calcium and Zinc lignates were proven to be good antioxidants for rubber composites. The purpose of this paper is to evaluate the copper lignate antioxidant activity along…

Abstract

Purpose

Calcium and Zinc lignates were proven to be good antioxidants for rubber composites. The purpose of this paper is to evaluate the copper lignate antioxidant activity along with evaluating its electrical conductivity in rubber composites.

Design/methodology/approach

The antioxidant activity of the Cu-LSF complex was compared with that of standard commercial antioxidant additives as a green alternative. The rheological characteristics, thermal aging and mechanical and electrical properties were evaluated for the NBR vulcanizates containing the different antioxidants in the presence or absence of coupling agents.

Findings

Results revealed that the Cu-LSF complex (5 phr) can function as a compatibilizing, antioxidant and electrical conductivity agent.

Originality/value

The new copper complex prepared from paper-pulping black liquor of wastes could be used as a green antioxidant and electrical conductivity agent in rubber composites.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article
Publication date: 6 May 2020

Christoph Jörgens and Markus Clemens

In high-voltage direct current (HVDC) cable systems, space charges accumulate because of the constant applied voltage and the nonlinear electric conductivity of the…

Abstract

Purpose

In high-voltage direct current (HVDC) cable systems, space charges accumulate because of the constant applied voltage and the nonlinear electric conductivity of the insulating material. The change in the charge distribution results in a slowly time-varying electric field. Space charges accumulate within the insulation bulk and at interfaces. With an operation time of several years of HVDC systems, typically the stationary electric field is of interest. The purpose of this study is to investigate the influence of interfaces on the stationary electric field stress and space charge density.

Design/methodology/approach

An analytic description of the stationary electric field inside cable insulation is developed and numerical simulations of a cable joint geometry are applied, considering spatial variations of the conductivity in the vicinity of the electrodes and interfaces.

Findings

With increasing conductivity values toward the electrodes, the resulting field stress decreases, whereas a decreasing conductivity results in an increasing electric field. The increased electric field may cause partial discharge, resulting in accelerated aging of the insulation material. Thus, interfaces and surfaces are characterized as critical areas for the reliability of HVDC cable systems.

Research limitations/implications

This study is restricted to stationary electric field and temperature distributions. The electric field variations during a polarity reversal or a time-varying temperature may result in an increased electric conductivity and electric field at interfaces and surfaces.

Originality/value

An analytical description of the electric field, considering surface effects, is developed. The used conductivity model is applicable for cable and cable-joint insulations, where homo- and hetero-charge effects are simulated. These simulations compare well against measurements.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 1 December 1997

R.L. Dietz, D. Peck, P.J. Robinson, M.G. Firmstone, P.M. Bartholomew and G. Paterson

The trendtowards higher density, higher frequency, higher power active devices in placing increasinglydifficult demands on device packaging. Materials with high thermal…

Downloads
512

Abstract

The trend towards higher density, higher frequency, higher power active devices in placing increasingly difficult demands on device packaging. Materials with high thermal conductivities are replacing the traditional ceramics in hermetic, high power packages, and MCM/ hybrid modules. Thermally enhanced plastic packages more frequently feature heat sinks embedded in the package for direct attachment of the power devices. Today's challenge in electronic packaging is to dissipate the heat from the source, the device itself, without affecting its electrical performance or reliability. The material directly contacting the device is the die attach medium. On lower power packages, the die bond line is not usually the highest thermal resistance in the thermal path. With highly conductive substrates and heat sinks, the die attach material now becomes the critical element directly in series with the highly conductive substrate. Fundamental limitations in thermal properties of about 3 W/mK exist in present‐day organic adhesives, primarily of the thermosetting type. This thermal conductivity (k) does not meet the current demands of thermally enhanced plastic laminate packages, MCMs, or direct die attach to heat spreaders or heat sinks. This paper describes the development, properties and application of electrically conductive thermoplastic adhesive pastes having thermal conductivity values as high as 35 W/mK, and able to produce thin, void‐free bond lines for maximum thermal transfer. The key material variables are isolated and evaluated for their impact of the k value. DOEs (design of experiments) were run to optimise the combination of the key variables, namely size/shape of the filler and the volume fraction to produce the highest k without sacrificing other functional properties such as adhesion. The effect of polymer chemistry (thermoset and thermoplastic) was also studied. The properties of the newly developed, enhanced conductivity thermoplastic adhesives are compared with other material technologies and examples of current applications reviewed.

Details

Soldering & Surface Mount Technology, vol. 9 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

To view the access options for this content please click here
Article
Publication date: 5 May 2015

Haibao Lu, Yongtao Yao, Shipeng Zhu, Yunhua Yang and Long Lin

The purpose of this paper is a study aimed at overcoming the interface issue between nanopaper and polymer matrix in shape-memory polymer (SMP) composite laminates caused…

Abstract

Purpose

The purpose of this paper is a study aimed at overcoming the interface issue between nanopaper and polymer matrix in shape-memory polymer (SMP) composite laminates caused by their large dissimilarity in electrical/thermal conductive properties. The study attempted to develop an effective approach to fabricate free-standing carbon nanofibre (CNF) assembly in octagon shape formation. The structure design and thermal conductive performance of the resulting octagon-shaped CNF assembly were optimised and simulated.

Design/methodology/approach

The CNF nanopaper was prepared based on a filtration method. The SMP nanocomposites were fabricated by incorporating these CNF assemblies with epoxy-based SMP resin by a resin-transfer modelling technique. Thermal conductivity of the octagon-shaped CNF assembly was simulated using the ANSYS FLUENT software for structure design and optimisation. The effect of the octagon-shaped CNF on the thermomechanical properties and thermally responsive shape-memory effect of the resulting SMP nanocomposites were characterised and interpreted.

Findings

The CNF template incorporated with SMP to achieve Joule heating triggered shape recovery at a low electric voltage of 3-10 V, due to which the electrical resistivity of SMP nanocomposites was significantly improved and lowered to 0.20 O·cm by the CNF template. It was found that the octagon CNF template with 2 mm width of skeleton presented a highest thermally conductive performance to transfer resistive heat to the SMP matrix.

Research limitations/implications

A simple way for fabricating electro-activated SMP nanocomposites has been developed by using an octagon CNF template. Low electrical voltage actuation in SMP has been achieved.

Originality/value

The fabricated CNF template, the structure design and analysis of dynamic thermomechanical properties of SMP are novel.

Details

Pigment & Resin Technology, vol. 44 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of over 4000