Search results

1 – 10 of over 86000
Article
Publication date: 9 August 2024

Juanyan Miao, Yiwen Li, Siyu Zhang, Honglei Zhao, Wenfeng Zou, Chenhe Chang and Yunlong Chang

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for…

Abstract

Purpose

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for welding technology, so the optimization and improvement of traditional welding methods become urgent needs.

Design/methodology/approach

External magnetic field assisted welding is an emerging technology in recent years, acting in a non-contact manner on the welding. The action of electromagnetic forces on the arc plasma leads to significant changes in the arc behavior, which affects the droplet transfer and molten pool formation and ultimately improve the weld seam formation and joint quality.

Findings

In this paper, different types of external magnetic fields are analyzed and summarized, which mainly include external transverse magnetic field, external longitudinal magnetic field and external cusp magnetic field. The research progress of welding behavior under the effect of external magnetic field is described, including the effect of external magnetic field on arc morphology, droplet transfer and weld seam formation law.

Originality/value

However, due to the extremely complex physical processes under the action of the external magnetic field, the mechanism of physical fields such as heat, force and electromagnetism in the welding has not been thoroughly analyzed, in-depth theoretical and numerical studies become urgent.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 March 2010

Yi Lin and Xiaoya He

The purpose of this paper is to reach two goals: one is to generalize the well‐studied theories of electricity and magnetism to the enrichment of deepened understanding of the…

Abstract

Purpose

The purpose of this paper is to reach two goals: one is to generalize the well‐studied theories of electricity and magnetism to the enrichment of deepened understanding of the general systemic yoyo model, and the other is to employ the established yoyo model to provide more refined explanations for some of the known experimental observations in physics.

Design/methodology/approach

The general structure and the field characteristics of the general systemic yoyo model are employed as the basis of our exploration in this paper. Then, methods of quantitative analysis are introduced to address some of the problems encountered.

Findings

Among several new results, many important concepts, such as ring‐shaped electric fields, cylinders of equal potential intensities, yoyo resistances, yoyo capacitors, etc. are introduced and studied in some detail. Several important Laws in electromagnetic theory, such as Ohm's law, Kirchhoff's laws, etc. are generalized to the case of the general systemic yoyo model. The refined theory is applied to provide theoretical explanations for some laboratory‐observed phenomena that cannot be well illustrated by either Faraday's theory of electromagnetic induction or Lenz's law.

Originality/value

Phenomena related to electricity and magnetism are explained the first time in history by using a unified model: the systemic yoyo model. At the same time, some well established Laws in physics are generalized to scenarios of this general mode with the hope that these new Laws can be applied equally well to natural and social sciences in the coming years.

Details

Kybernetes, vol. 39 no. 2
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 11 August 2023

Mingqiu Zheng, Chenxing Hu and Ce Yang

The purpose of this study is to propose a fast method for predicting flow fields with periodic behavior with verification in the context of a radial turbine to meet the urgent…

Abstract

Purpose

The purpose of this study is to propose a fast method for predicting flow fields with periodic behavior with verification in the context of a radial turbine to meet the urgent requirement to effectively capture the unsteady flow characteristics in turbomachinery. Aiming at meeting the urgent requirement to effectively capture the unsteady flow characteristics in turbomachinery, a fast method for predicting flow fields with periodic behavior is proposed here, with verification in the context of a radial turbine (RT).

Design/methodology/approach

Sparsity-promoting dynamic mode decomposition is used to determine the dominant coherent structures of the unsteady flow for mode selection, and for flow-field prediction, the characteristic parameters including amplitude and frequency are predicted using one-dimensional Gaussian fitting with flow rate and two-dimensional triangulation-based cubic interpolation with both flow rate and rotation speed. The flow field can be rebuilt using the predicted characteristic parameters and the chosen model.

Findings

Under single flow-rate variation conditions, the turbine flow field can be recovered using the first seven modes and fitted amplitude modulus and frequency with less than 5% error in the pressure field and less than 9.7% error in the velocity field. For the operating conditions with concurrent flow-rate and rotation-speed fluctuations, the relative error in the anticipated pressure field is likewise within an acceptable range. Compared to traditional numerical simulations, the method requires a lot less time while maintaining the accuracy of the prediction.

Research limitations/implications

It would be challenging and interesting work to extend the current method to nonlinear problems.

Practical implications

The method presented herein provides an effective solution for the fast prediction of unsteady flow fields in the design of turbomachinery.

Originality/value

A flow prediction method based on sparsity-promoting dynamic mode decomposition was proposed and applied into a RT to predict the flow field under various operating conditions (both rotation speed and flow rate change) with reasonable prediction accuracy. Compared with numerical calculations or experiments, the proposed method can greatly reduce time and resource consumption for flow field visualization at design stage. Most of the physics information of the unsteady flow was maintained by reconstructing the flow modes in the prediction method, which may contribute to a deeper understanding of physical mechanisms.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2005

K. Li, B.Q. Li, J. Handa and H.C. de Groh

The quality of crystals grown in space can be diversely affected by the melt flows induced by g‐jitter associated with a space vehicle. This paper presents a full…

Abstract

Purpose

The quality of crystals grown in space can be diversely affected by the melt flows induced by g‐jitter associated with a space vehicle. This paper presents a full three‐dimensional (3D) transient finite element analysis of the complex fluid flow and heat and mass transfer phenomena in a simplified Bridgman crystal growth configuration under the influence of g‐jitter perturbations and magnetic fields.

Design/methodology/approach

The model development is based on the Galerkin finite element solution of the magnetohydrodynamic governing equations describing the thermal convection and heat and mass transfer in the melt. A physics‐based re‐numbering algorithm is used to make the formidable 3D simulations computationally feasible. Simulations are made using steady microgravity, synthetic and real g‐jitter data taken during a space flight.

Findings

Numerical results show that g‐jitter drives a complex, 3D, time dependent thermal convection and that velocity spikes in response to real g‐jitter disturbances in space flights, resulting in irregular solute concentration distributions. An applied magnetic field provides an effective means to suppress the deleterious convection effects caused by g‐jitter. Based on the simulations with applied magnetic fields of various strengths and orientations, the magnetic field aligned with the thermal gradient provides an optimal damping effect, and the stronger magnetic field is more effective in suppressing the g‐jitter induced convection. While the convective flows and solute transport are complex and truly 3D, those in the symmetry plane parallel to the direction of g‐jitter are essentially two‐dimensional (2D), which may be approximated well by the widely used 2D models.

Originality/value

The physics‐based re‐numbering algorithm has made possible the large scale finite element computations for 3D g‐jitter flows in a magnetic field. The results indicate that an applied magnetic field can be effective in suppressing the g‐jitter driven flows and thus enhance the quality of crystals grown in space.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 October 2005

Douglas L. Veilleux, Eduardo Gonçalves, Mohammad Faghri, Yutaka Asako and Majid Charmchi

To demonstrate, through numerical models, that it is possible to simulated low‐gravity phase change (melting), of an electrically conducting material (gallium), in terrestrial…

Abstract

Purpose

To demonstrate, through numerical models, that it is possible to simulated low‐gravity phase change (melting), of an electrically conducting material (gallium), in terrestrial conditions via the application of electromagnetic fields.

Design/methodology/approach

A complete three‐dimensional mathematical formulation governing a phase change process in the presence of an electromagnetic field has been developed. In addition a comprehensive parametric study has been completed to study the various effects of gravity, Stefan number, Hartmann number and electromagnetic pressure number upon the phase change process.

Findings

The results show that the application of an electromagnetic filed can be used to simulate key melting characteristics found for actual low‐gravity. However, the resulting three‐dimensional flow field in the melted region differs from actual low‐gravity. The application of an electromagnetic field creates a flow phenomenon not found in actual low‐gravity or previously seen in two‐dimensional problems.

Research limitations/implications

Future work may include the use of oscillating electromagnetic fields to enhance convection in energy storage systems in a low‐gravity environment.

Practical implications

The ability to suppress unwanted convective flows in a phase change process without the high magnetic fields necessary in magnetic field only suppression systems.

Originality/value

This work fills a void in the literature related to conducting fluids and the effects of magnetic and electromagnetic fields.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 October 2022

Yang Zhou, Wenying Qu, Fan Zhou, Xinggang Li, Lijun Song and Qiang Zhu

This paper aims to understand the magnetohydrodynamics (MHD) mechanism in the molten pool under different modes of magnetic field. The comparison focuses on the Lorenz force…

Abstract

Purpose

This paper aims to understand the magnetohydrodynamics (MHD) mechanism in the molten pool under different modes of magnetic field. The comparison focuses on the Lorenz force excitation and its effect on the melt flow and solidification parameters, intending to obtain practical references for the design of magnetic field-assisted laser directed energy deposition (L-DED) equipment.

Design/methodology/approach

A three-dimensional transient multi-physical model, coupled with MHD and thermodynamic, was established. The dimension and microstructure of the molten pool under a 0T magnetic field was used as a benchmark for accuracy verification. The interaction between the melt flow and the Lorenz force is compared under a static magnetic field in the X-, Y- and Z-directions, and also an oscillating and alternating magnetic field.

Findings

The numerical results indicate that the chaotic fluctuation of melt flow trends to stable under the magnetostatic field, while a periodically oscillating melt flow could be obtained by applying a nonstatic magnetic field. The Y and Z directional applied magnetostatic field shows the effective damping effect, while the two nonstatic magnetic fields discussed in this paper have almost the same effect on melt flow. Since the heat transfer inside the molten pool is dominated by convection, the application of a magnetic field has a limited effect on the temperature gradient and solidification rate at the solidification interface due to the convection mode of melt flow is still Marangoni convection.

Originality/value

This work provided a deeper understanding of the interaction mechanism between the magnetic field and melt flow inside the molten pool, and provided practical references for magnetic field-assisted L-DED equipment design.

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 November 2022

Nirmal K. Manna, Nirmalendu Biswas, Dipak Kumar Mandal, U.K. Sarkar, Hakan F. Öztop and Nidal Abu-Hamdeh

The study aims to assess the heater and cooler positional impacts systematically using four different quadrantal cavities filled with hybrid nanofluid, keeping the curved surface…

Abstract

Purpose

The study aims to assess the heater and cooler positional impacts systematically using four different quadrantal cavities filled with hybrid nanofluid, keeping the curved surface adiabatic under the orientated magnetic fields. Both heat transfer and entropy generation analyses are performed for a hybrid nanofluid flow in a quarter circular cavity considering different orientations of magnetic fields. The investigation is focused to assess the heater and cooler positional impacts systematically using four different quadrantal cavities (first to fourth quadrantal cavities), keeping the curved surface always adiabatic. The impacts of pertinent variables like Rayleigh number, Hartmann number and volumetric concentration of hybrid nanofluid on heat transfer characteristics are in consideration with the second law of thermodynamics. The analysis includes the thermal, viscous and magnetic aspects of entropy generation.

Design/methodology/approach

After validating against the experimental results, the present work explores numerically following the Galerkin weighted finite element technique. The solution is obtained through an iterative process satisfying the convergence limit of 10−8 and 10−10 for the maximum residuals and the mass defect, respectively.

Findings

It revealed that the mutual exchange of heater-cooler positions on the adjacent straight edges of the quadrant cavity does not have any impact on the flow direction. Although the magnitude of flow velocity enhances, the sidewall plays a decision-making role in the formation of a single circulation vortex. It also shows that thermal entropy production is the main cause behind thermodynamic irreversibility. The second or third quadrantal arrangement could have been opted as the best configuration of the heater-cooler position for achieving superior heat transfer. The Lorentz force plays a great role to moderate the heat transfer process. The maximum entropy generation is located, as expected, at the heating-cooling junction point.

Research limitations/implications

There are plenty of prospects for extension of the present research concept numerically or experimentally, adopting three-dimensional analysis, working fluids, boundary conditions, etc. In fact, the study could be carried out for unsteady or turbulent fluid flow.

Practical implications

As the position of the heated source and cold sink on the enclosure geometry can significantly alter the thermo-fluid phenomena, this kind of analysis is of utmost relevance for the further development of efficient heating/cooling arrangements and proper management of the devices subjected to magnetic field applications. This original contribution could be a potentially valuable source for future research and exploration pertaining to a thermal system or device, like heat exchangers, solar collectors, thermal storage, electronic cooling, food and drying technologies and others.

Originality/value

In the literature, an inadequate number of works have focused on a quadrantal cavity, mostly considering the first quadrant of the circle. However, during practical applications, it is possible that the cavity can take the shape of the other three quadrants too, and the corresponding knowledge on relative performance is still missing. Furthermore, the present investigation includes the existence of magnetic fields at various orientations. The impact analysis of this field-induced Lorentz force on the nanofluid thermal performance is another major contribution from the present work that would enrich the domain knowledge and could be useful for thermal system engineers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 May 2021

Mojtaba Sepehrnia, Hossein Khorasanizadeh and Mohammad Behshad Shafii

This paper aims to study the thermal and thermo-hydraulic performances of ferro-nanofluid flow in a three-dimensional trapezoidal microchannel heat sink (TMCHS) under uniform heat…

Abstract

Purpose

This paper aims to study the thermal and thermo-hydraulic performances of ferro-nanofluid flow in a three-dimensional trapezoidal microchannel heat sink (TMCHS) under uniform heat flux and magnetic fields.

Design/methodology/approach

To investigate the effect of direction of Lorentz force the magnetic field has been applied: transversely in the x direction (Case I);transversely in the y direction (Case II); and parallel in the z direction (Case III). The three-dimensional governing equations with the associated boundary conditions for ferro-nanofluid flow and heat transfer have been solved by using an element-based finite volume method. The coupled algorithm has been used to solve the velocity and pressure fields. The convergence is reached when the accuracy of solutions attains 10–6 for the continuity and momentum equations and 10–9 for the energy equation.

Findings

According to thermal indicators the Case III has the best performance, but according to performance evaluation criterion (PEC) the Case II is the best. The simulation results show by increasing the Hartmann number from 0 to 12, there is an increase for PEC between 845.01% and 2997.39%, for thermal resistance between 155.91% and 262.35% and ratio of the maximum electronic chip temperature difference to heat flux between 155.16% and 289.59%. Also, the best thermo-hydraulic performance occurs at Hartmann number of 12, pressure drop of 10 kPa and volume fraction of 2%.

Research limitations/implications

The embedded electronic chip on the base plate generates heat flux of 60 kW/m2. Simulations have been performed for ferro-nanofluid with volume fractions of 1%, 2% and 3%, pressure drops of 10, 20 and 30 kPa and Hartmann numbers of 0, 3, 6, 9 and 12.

Practical implications

The authors obtained interesting results, which can be used as a design tool for magnetohydrodynamics micro pumps, microelectronic devices, micro heat exchanger and micro scale cooling systems.

Originality/value

Review of the literature indicated that there has been no study on the effects of magnetic field on thermal and thermo-hydraulic performances of ferro-nanofluid flow in a TMCHS, so far. In this three dimensional study, flow of ferro-nanofluid through a trapezoidal heat sink with five trapezoidal microchannels has been considered. In all of previous studies, in which the effect of magnetic field has been investigated, the magnetic field has been applied only in one direction. So as another innovation of the present research, the effect of applying magnetic field direction (transverse and parallel) on thermo-hydraulic behavior of TMCHS is investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 September 2014

Wanyun Xue, Wenxin Huai, Zhongdong Qian, Zhonghua Yang and Yuhong Zeng

The purpose of this paper is to examine the initial mixing of wastewater discharged from submerged outfall diffusers and the influence of port configurations on wastewater…

Abstract

Purpose

The purpose of this paper is to examine the initial mixing of wastewater discharged from submerged outfall diffusers and the influence of port configurations on wastewater distribution based on computational results.

Design/methodology/approach

Marine wastewater discharges from multiport diffusers are investigated by numerically solving three-dimensional and uncompressible two-phase flow fields. A mixture model simulates this flow and the standard k-e model to resolve flow turbulence; inter-phase interactions were described in terms of relative slip velocity between phases. Computations were performed for two values of the port spacings s/H with different current Froude numbers F.

Findings

Computational results compared well with previous laboratory measurements. Numerical results reveal that for both the closely spaced (s/H=0.21) and widely spaced (s/H=3.0) ports, the normalized dilution Sn becomes independent of F; further, the length of the near field xn and the spreading layer thickness hn are functions of F. For the closely spaced ports, the wastewater discharge behaves like a line plume, the Coanda effect is obvious, quasi-bifurcation is present, horseshoe structures of the jets in the planes are rapidly produced and then squashed and elongated, and the jet trajectories based on maximum velocity precede those based on maximum concentration. For the widely spaced ports, the wastewater discharge behaves like a point plume, the Coanda effect is not obvious, bifurcation is present, horseshoe structures of the jets in the planes are gradually produced and become ellipses, and the jet trajectories based on maximum velocity are similar to those based on maximum concentration.

Originality/value

Semi-empirical equations are presented to predict major near field characteristics. These provide guidance for designing multiport diffusers and assessing environmental impact.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 February 2021

Leo Lukose and Tanmay Basak

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the…

Abstract

Purpose

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the boundary walls, thermal conditions and/ or kinematics of objects embedded in the cavities and kinematics of external flow field through the ventilation ports. Experimental works on mixed convection have also been addressed.

Design/methodology/approach

This review is based on 10 unified models on mixed convection within cavities. Models 1–5 involve mixed convection based on the movement of single or double walls subjected to various temperature boundary conditions. Model 6 elucidates mixed convection due to the movement of single or double walls of cavities containing discrete heaters at the stationary wall(s). Model 7A focuses mixed convection based on the movement of wall(s) for cavities containing stationary solid obstacles (hot or cold or adiabatic) whereas Model 7B elucidates mixed convection based on the rotation of solid cylinders (hot or conductive or adiabatic) within the cavities enclosed by stationary or moving wall(s). Model 8 is based on mixed convection due to the flow of air through ventilation ports of cavities (with or without adiabatic baffles) subjected to hot and adiabatic walls. Models 9 and 10 elucidate mixed convection due to flow of air through ventilation ports of cavities involving discrete heaters and/or solid obstacles (conductive or hot) at various locations within cavities.

Findings

Mixed convection plays an important role for various processes based on convection pattern and heat transfer rate. An important dimensionless number, Richardson number (Ri) identifies various convection regimes (forced, mixed and natural convection). Generalized models also depict the role of “aiding” and “opposing” flow and combination of both on mixed convection processes. Aiding flow (interaction of buoyancy and inertial forces in the same direction) may result in the augmentation of the heat transfer rate whereas opposing flow (interaction of buoyancy and inertial forces in the opposite directions) may result in decrease of the heat transfer rate. Works involving fluid media, porous media and nanofluids (with magnetohydrodynamics) have been highlighted. Various numerical and experimental works on mixed convection have been elucidated. Flow and thermal maps associated with the heat transfer rate for a few representative cases of unified models [Models 1–10] have been elucidated involving specific dimensionless numbers.

Originality/value

This review paper will provide guidelines for optimal design/operation involving mixed convection processing applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 86000