Three‐dimensional numerical simulation of g‐jitter induced convection and solute transport in magnetic fields

K. Li (School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA)
B.Q. Li (School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA)
J. Handa (School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA)
H.C. de Groh (NASA Glenn Research Center, Cleveland, Ohio, USA)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Publication date: 1 December 2005

Abstract

Purpose

The quality of crystals grown in space can be diversely affected by the melt flows induced by g‐jitter associated with a space vehicle. This paper presents a full three‐dimensional (3D) transient finite element analysis of the complex fluid flow and heat and mass transfer phenomena in a simplified Bridgman crystal growth configuration under the influence of g‐jitter perturbations and magnetic fields.

Design/methodology/approach

The model development is based on the Galerkin finite element solution of the magnetohydrodynamic governing equations describing the thermal convection and heat and mass transfer in the melt. A physics‐based re‐numbering algorithm is used to make the formidable 3D simulations computationally feasible. Simulations are made using steady microgravity, synthetic and real g‐jitter data taken during a space flight.

Findings

Numerical results show that g‐jitter drives a complex, 3D, time dependent thermal convection and that velocity spikes in response to real g‐jitter disturbances in space flights, resulting in irregular solute concentration distributions. An applied magnetic field provides an effective means to suppress the deleterious convection effects caused by g‐jitter. Based on the simulations with applied magnetic fields of various strengths and orientations, the magnetic field aligned with the thermal gradient provides an optimal damping effect, and the stronger magnetic field is more effective in suppressing the g‐jitter induced convection. While the convective flows and solute transport are complex and truly 3D, those in the symmetry plane parallel to the direction of g‐jitter are essentially two‐dimensional (2D), which may be approximated well by the widely used 2D models.

Originality/value

The physics‐based re‐numbering algorithm has made possible the large scale finite element computations for 3D g‐jitter flows in a magnetic field. The results indicate that an applied magnetic field can be effective in suppressing the g‐jitter driven flows and thus enhance the quality of crystals grown in space.

Keywords

Citation

Li, K., Li, B., Handa, J. and de Groh, H. (2005), "Three‐dimensional numerical simulation of g‐jitter induced convection and solute transport in magnetic fields", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 15 No. 8, pp. 872-893. https://doi.org/10.1108/09615530510625138

Download as .RIS

Publisher

:

Emerald Group Publishing Limited

Copyright © 2005, Emerald Group Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.
To rent this content from Deepdyve, please click the button.