Search results

1 – 10 of 247
Article
Publication date: 29 August 2023

Chigoziri N. Njoku, Temple Uzoma Maduoma, Wilfred Emori, Rita Emmanuel Odey, Beshel M. Unimke, Emmanuel Yakubu, Cyril C. Anorondu, Daniel I. Udunwa, Onyinyechi C. Njoku and Kechinyere B. Oyoh

Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to…

Abstract

Purpose

Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to protect metals from deterioration in corrosive environments. Moreover, the toxic nature, non-biodegradability and price of most conventional corrosion inhibitors have encouraged the application of greener and more sustainable options, with natural and synthetic drugs being major actors. Hence, this paper aims to stress the capability of natural and synthetic drugs as manageable and sustainable, environmentally friendly solutions to the problem of metal corrosion.

Design/methodology/approach

In this review, the recent developments in the use of natural and synthetic drugs as corrosion inhibitors are explored in detail to highlight the key advancements and drawbacks towards the advantageous utilization of drugs as corrosion inhibitors.

Findings

Corrosion is a critical issue in numerous modern applications, and conventional strategies of corrosion inhibition include the use of toxic and environmentally harmful chemicals. As greener alternatives, natural compounds like plant extracts, essential oils and biopolymers, as well as synthetic drugs, are highlighted in this review. In addition, the advantages and disadvantages of these compounds, as well as their effectiveness in preventing corrosion, are discussed in the review.

Originality/value

This survey stresses on the most recent abilities of natural and synthetic drugs as viable and sustainable, environmentally friendly solutions to the problem of metal corrosion, thus expanding the general knowledge of green corrosion inhibitors.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 June 2016

Md. Zaved Hossain Khan, Md. Abdul Aziz, Md. Rafiul Hasan and Md. Rashid Al-Mamun

The purpose of this study is to understand the inhibitor behavior of specific drug against mild steel corrosion and their adsorption mechanism on the surface.

Abstract

Purpose

The purpose of this study is to understand the inhibitor behavior of specific drug against mild steel corrosion and their adsorption mechanism on the surface.

Design/methodology/approach

Corrosion rates are influenced by the formation of inhibitor aggregates at the mild steel surface. Detail surface characterizations of mild steel have been studied before and after adsorption of drugs in 1N HCl solution. Scanning electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy were used to examine the effect of drug adsorption on steel surface.

Findings

Scanning electron microscopy analysis suggested that the metal had been protected from aggressive corrosion because of the addition of the inhibitors. Atomic force microscopy visualization confirmed the formation of protective layer on steel surface, resulting in the decrease in surface roughness with corrosion rates. The nature of metal surface has been analyzed by Fourier transform infrared spectroscopy.

Originality/value

The findings of this study will help us to understand the interaction of specific drugs with mild steel surface and their potential inhibition mechanism.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 18 February 2022

Jasvinder Singh, Pulak Mohan Pandey, Tejinder Kaur and Neetu Singh

The purpose of this paper is to fabricate pre-existing geometries of the stents using solvent cast 3D printing (SC3P) and encapsulation of each stent with heparin drug by using…

Abstract

Purpose

The purpose of this paper is to fabricate pre-existing geometries of the stents using solvent cast 3D printing (SC3P) and encapsulation of each stent with heparin drug by using aminolysis reaction.

Design/methodology/approach

The iron pentacarbonyl powder and poly-ɛ-caprolactone blend (PCIP) were used to print stent designs of Art18z, Palmaz-Schatz and Abbott Bvs1.1. The properties of antithrombosis, anticoagulation and blood compatibility were introduced in the stents by conjugation of heparin drug via the aminolysis process. The aminolysis process was confirmed by energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy due to presence of amide group and nitrogen peak in the respective analysis. Biological studies were performed to depict the cell viability, hemocompatibility and antithrombotic properties. Besides, mechanical behaviors were analyzed to study the behavior of the stents under radial compression load and bending load.

Findings

The amount of heparin immobilized on the Art18z, Palmaz-Schatz and Abbott Bvs1.1 stents were 255 ± 27, 222 ± 30 and 212 ± 13 µg, respectively. The cell viability studies using L929 fibroblast cells confirmed the cytocompatibility of the stents. The heparinized SC3P printed stents displayed excellent thrombo-resistance, anticoagulation properties and hemocompatibility as confirmed by blood coagulation analysis, platelet adhesion test and hemolysis analysis. Besides, mechanical behavior was found in context of the real-life stents. All these assessments confirmed that the developed stents have the potential to be used in the real environment of coronary arteries.

Originality/value

Various customized shaped biodegradable stents were fabricated using 3D printing technique and encapsulated with heparin drug using aminolysis process.

Article
Publication date: 19 November 2021

Fanhua Wu, Yuyu Zhang, Tao Li, Yongfeng Liu, Yi Liu, Zhiang Yuan and Rongjun Qu

The purpose of this study was to prepare carboxylated attapulgite (APT-COOH) and then be used as one of the ligands to prepare metal organic framework (MOF) hybrid materials to…

Abstract

Purpose

The purpose of this study was to prepare carboxylated attapulgite (APT-COOH) and then be used as one of the ligands to prepare metal organic framework (MOF) hybrid materials to reduce the cost of MOF materials and improve the dispersed condition of APT. And then the materials were used to enrich anionic dye Congo red from aqueous solution.

Design/methodology/approach

The MOF hybrid materials were designed by means of facile reflux method rather than hydrothermal method, characterized by Thermogravimetric Analysis (TGA), Fourier Transform Infrared (FTIR) Spectrometer and pore structure. The dispersed degree of APT-COOH in the MOF materials was validated according to adsorption efficiency for Congo red.

Findings

Due to introduction of APT-COOH, the microenvironment of the MOF materials changed, leading to different adsorption behaviors. Compared to the MOF material without APT-COOH, the adsorption capacities of the hybridized MOF materials with different amounts of APT-COOH introduced increased by 4.58% and 15.55%, respectively, as the initial concentration of Congo red solution of 300 mg/L. Meantime, hybridized MOF materials were suitable to remove Congo red with low concentration, while the MOF material without APT-COOH was appropriate to enrich Congo red with high concentration.

Research limitations/implications

The microstructure of MOF hybrid materials in detail is the further and future investigation.

Practical implications

This study will provide a method to reduce the cost of MOF materials and a theoretical support to treat anionic dyes from aqueous solution.

Originality/value

APT-COOH was prepared and used as one of the ligands to synthesize MOF material to improve the dispersed degree of APT-COOH and reduce the cost of the MOF materials. The adsorption efficiency was greatly enhanced with low concentration of Congo red solution, and the results indicated that hydrogen bonding, electrostatic interaction, and p-p conjugation were involved in the adsorption process. The prepared MOFs materials exhibited excellent adsorption efficiency, which made the present materials highly promising and potentially useful in practical application as adsorbents to enrich anionic dyes such as Congo red from aqueous solution.

Details

Pigment & Resin Technology, vol. 51 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 February 2024

Fatemeh Mollaamin and Majid Monajjemi

Bisphosphonate (BP) medications can be applied to prohibit the damage of bone density and the remedy of bone illnesses such as osteoporosis. As the metal chelating of phosphonate…

Abstract

Purpose

Bisphosphonate (BP) medications can be applied to prohibit the damage of bone density and the remedy of bone illnesses such as osteoporosis. As the metal chelating of phosphonate groups are nearby large with six O atoms possessing the high negative charge, these compounds are active toward producing the chelated complexes through drug design method. BP agents have attracted much attention for the clinical treatment of some skeletal diseases depicted by enhancing of osteoclast-mediated bone resorption.

Design/methodology/approach

In this work, it has been accomplished the CAM-B3LYP/6–311+G(d, p)/LANL2DZ to estimate the susceptibility of SWCNT for adsorbing alendronate, ibandronate, neridronate and pamidronate chelated to two metal cations of 2Mg2+, 2Ca2+, 2Sr2+ through nuclear magnetic resonance and thermodynamic parameters. Therefore, the data has explained that the feasibility of using SWCNT and BP agents becomes the norm in metal chelating of drug delivery system which has been selected through alendronate → 2X, ibandronate → 2X, neridronate → 2X and pamidronate → 2X (X = Mg2+/Ca2+/Sr2+) complexes.

Findings

The thermodynamic results have exhibited that the substitution of 2Ca2+ cation by 2Sr2+ cation in the structure of bioactive glasses can be efficient for treating vertebral complex fractures. However, it has been observed the most fluctuation in the Gibbs free energy for BPs → 2Sr2+ at 300 K. Furthermore, Monte Carlo simulation has resulted by increasing the dielectric constant in the aqueous medium can enhance the stability and efficiency of BP drugs for preventing the loss of bone density and treating the osteoporosis.

Originality/value

According to this research, by incorporation of chelated 2Mg2+, 2Ca2+ and 2Sr2+ cations to BP drugs adsorbed onto (5, 5) armchair SWCNT, the network compaction would increase owing to the larger atomic radius of Sr2+ cation rather than Ca2+ and Mg2+, respectively.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 2 March 2015

Salwa H El-Sabbagh and Nivin M. Ahmed

This paper aims to express in detail the rheological, morphological and thermal properties of unpigmented and pigmented styrene-butadiene rubber composites with new prepared…

Abstract

Purpose

This paper aims to express in detail the rheological, morphological and thermal properties of unpigmented and pigmented styrene-butadiene rubber composites with new prepared inorganic pigment based on kaolin covered with a thin layer of calcium and magnesium oxides or mixed oxide of both together. These new pigments combine the properties of both their constituents (kaolin and metal oxides), which are a new trend in inorganic pigments called core-shell pigments. The pigments used for comparison are kaolin (K), CaO/kaolin (CaO/K), MgO/kaolin (MgO/K) and CaO.MgO/kaolin (CaO.MgO/K).

Design/methodology/approach

The different pigments were characterized using different analytical and spectrophotometric techniques, such as X-ray diffraction, scanning electron microscopy/energy dispersive X-ray and transmission electron microscopy, while rubber vulcanizates' rheological, morphological, swelling and thermal properties were examined using different standard and instrumental testing and methods.

Findings

The study revealed that there is a significant effect of the new prepared pigments on SBR properties, where the optimum pigment loading was 40 phr for CaO/kaolin, while it was 2.5 phr for MgO/kaolin. Studying the effect of different ratios of oxides on kaolin (5, 10 and 20 per cent), different loadings of these pigments ranging between 2.5 and 40 phr were done for each pigment. These modified kaolin or core-shell metal oxide/kaolin pigments imparted new and improved reinforcing properties to SBR vulcanizates.

Research limitations/implications

No research limitations were found.

Practical implications

Core-shell MgO/kaolin pigments are eco-friendly and can replace other expensive pigments that are usually used as fillers in the rubber industry with less expenses and comparable efficiency.

Originality/value

These new pigments are cheap and efficient and can be used in different fields other than rubber.

Details

Pigment & Resin Technology, vol. 44 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 January 2018

Kumar P.E., Govindaraju M. and Sivakumar V.

The purpose of this paper is to study the corrosion inhibition performance of an eco-friendly drug clozapine on the corrosion of copper in 1.0 M nitric acid and 0.5 M sulfuric…

Abstract

Purpose

The purpose of this paper is to study the corrosion inhibition performance of an eco-friendly drug clozapine on the corrosion of copper in 1.0 M nitric acid and 0.5 M sulfuric acid solutions.

Design/methodology/approach

The corrosion inhibition nature of inhibitor molecule was evaluated by weight loss, electrochemical impedance spectroscopy and potentiodynamic polarization studies. An attempt was made to correlate the molecular properties of neutral and protonated forms of inhibitor molecule using quantum chemical calculations. The effect of temperature on the corrosion inhibition efficiency was also studied using electrochemical impedance spectroscopy. The potential of zero charge was determined to explain the mechanism of corrosion inhibition.

Findings

The studies on corrosion inhibition performance of clozapine showed that it has good corrosion inhibition efficiency on the corrosion of copper in 1.0 M nitric acid and 0.5 M sulfuric acid solutions. The adsorption of clozapine molecules onto the copper surface obeyed the Langmuir adsorption isotherm. The value of free energy of adsorption calculated is very close to −40 kJmol−1, indicating that the adsorption is through electrostatic coulombic attraction and chemisorption. The decrease in the value of energy of activation with the addition of inhibitor also shows the chemisorption of the inhibitor on the metal surface. The potential of zero charge and quantum chemical studies confirmed that the protonated molecules also get involved in the corrosion inhibition process through physisorption.

Originality/value

The present work indicates that clozapine can act as a good corrosion inhibitor for the corrosion of copper in acid media.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 July 2018

Yulu Shi, Wei Bai, Junming Guo, Libin Gao, Yijian Chen, You Wu and Linqiao Liang

This paper aims to evaluate the efficiency and mechanism of three kinds of expired nitroimidazole antibiotics as corrosion inhibitor for mild steel in 1M HCl.

Abstract

Purpose

This paper aims to evaluate the efficiency and mechanism of three kinds of expired nitroimidazole antibiotics as corrosion inhibitor for mild steel in 1M HCl.

Design/methodology/approach

Evaluation was carried out by weight loss and electrochemical techniques. The surface morphology and the composition of the elements of adsorption layer are studied by scanning electron microscopy and energy dispersive spectrometer.

Findings

The experimental results reveal that the maximum value of inhibition efficiency appear at an extreme point of concentration with the increase of concentration of the inhibitors. Ornidazole has better corrosion inhibition than metronidazole but not as tinidazole. The inhibitors all act as cathodic type corrosion inhibitor. The adsorption of ornidazole, metronidazole and tinidazole on mild steel obeys Langmuir adsorption isotherm and belongs to chemisorption of electron donating. Combined with the molecular structure of the corrosion inhibitor and the experimental structure, the authors propose a detailed mechanism analysis.

Originality/value

The expired nitroimidazole antibiotics as corrosion inhibitor for mild steel in hydrochloric acid solution is first studied. It provides a way to deal with expired drugs, thereby reducing environmental pollution. The study explored the inhibition mechanism affecting by comparison different structure of three kinds of expired nitroimidazole antibiotics molecular, providing theoretical support for the preparation of the new inhibitor.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 November 2015

Y. Sangeetha, S. Meenakshi and C. Sairam Sundaram

– The purpose of this paper is to develop an eco-friendly corrosion inhibitor for mild steel in 1 M HCl.

121

Abstract

Purpose

The purpose of this paper is to develop an eco-friendly corrosion inhibitor for mild steel in 1 M HCl.

Design/methodology/approach

A pharmaceutical drug acetyl G was investigated for its corrosion inhibition efficiency using weight loss method, potentiodynamic polarisation and electrochemical impedance spectroscopy.

Findings

The inhibition efficiency increased with increase in inhibitor concentration. Results from polarisation studies revealed mixed type of inhibition. Impedance studies, scanning electron microscopy and Fourier transform spectroscopy confirm the adsorption of inhibitor on the mild steel surface.

Research limitations/implications

The drug acetyl G has sulphur and nitrogen atoms which effectively block the corrosion of mild steel and is non-toxic and has good inhibition efficiency.

Practical implications

This method provides an excellent, non-toxic and cost-effective material as a corrosion inhibitor for mild steel in acid medium.

Originality/value

Application of this drug as a corrosion inhibitor has not been reported yet in the literature. Replacing the organic inhibitors, this green inhibitor shows excellent inhibition efficiency. This is adsorbed excellently on the mild steel surface due to the presence of long chain and hetero atoms. Thus, the drug retards the corrosion reaction.

Details

Pigment & Resin Technology, vol. 44 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 August 2021

Okechukwu Okechukwu Onukwuli, Benson Chinweuba Udeh, Monday Omotioma and Ikechukwu Abuchi Nnanwube

The purpose of this study was to investigate cimetidine as corrosion inhibitor of aluminium in hydrochloric acid medium.

Abstract

Purpose

The purpose of this study was to investigate cimetidine as corrosion inhibitor of aluminium in hydrochloric acid medium.

Design/methodology/approach

Cimetidine was characterized by gas chromatography mass spectrophotometer and Fourier transform infrared spectroscopy to determine its chemical composition and functional groups, respectively. Gravimetric, potentiodynamic polarization and electrochemical impedance spectroscopic techniques were used in the corrosion inhibition process. Thermodynamic and adsorption parameters were evaluated. And response surface methodology was used to optimize the corrosion inhibition process.

Findings

Analysis of the results revealed that major constituents of cimetidine include metronidazole, n-hexadecanoic acid cyclohexane and methyl ester. It has C-H stretch, C = N stretch, CH3C-H bend, ring C = C stretch, -C-O-O stretch, N-H bend, C-O stretch and C-H bend as predominant functional groups. Adsorption of molecules of the inhibitor on the aluminium surface was spontaneous, and it followed mechanism of physical adsorption. Response surface methodology revealed that quadratic model adequately described the inhibition efficiency of cimetidine as function of inhibitor concentration, temperature and time. Chemical and electrochemical results are in agreement that the cimetidine is a viable corrosion inhibitor. Cimetidine was revealed as mixed-type inhibitor because it controlled both cathodic and anodic reactions.

Originality/value

Empirical and optimization studies of cimetidine drug as corrosion inhibitor of aluminium in hydrochloric acid medium were carried out. The research results can provide the basis for deploying drugs (with mucosal protective and antacid properties) for corrosion control of metallic structures.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 247