Search results

1 – 10 of 196
Open Access
Article
Publication date: 16 March 2022

Michael Leumüller, Karl Hollaus and Joachim Schöberl

This paper aims to consider a multiscale electromagnetic wave problem for a housing with a ventilation grill. Using the standard finite element method to discretise the apertures…

Abstract

Purpose

This paper aims to consider a multiscale electromagnetic wave problem for a housing with a ventilation grill. Using the standard finite element method to discretise the apertures leads to an unduly large number of unknowns. An efficient approach to simulate the multiple scales is introduced. The aim is to significantly reduce the computational costs.

Design/methodology/approach

A domain decomposition technique with upscaling is applied to cope with the different scales. The idea is to split the domain of computation into an exterior domain and multiple non-overlapping sub-domains. Each sub-domain represents a single aperture and uses the same finite element mesh. The identical mesh of the sub-domains is efficiently exploited by the hybrid discontinuous Galerkin method and a Schur complement which facilitates the transition from fine meshes in the sub-domains to a coarse mesh in the exterior domain. A coarse skeleton grid is used on the interface between the exterior domain and the individual sub-domains to avoid large dense blocks in the finite element discretisation matrix.

Findings

Applying a Schur complement to the identical discretisation of the sub-domains leads to a method that scales very well with respect to the number of apertures.

Originality/value

The error compared to the standard finite element method is negligible and the computational costs are significantly reduced.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 22 March 2022

Hong Zhang and Tianlin Chen

The purpose of the study is to obtain and analyze vibro-acoustic characteristics.

Abstract

Purpose

The purpose of the study is to obtain and analyze vibro-acoustic characteristics.

Design/methodology/approach

A unified analysis model for the rotary composite laminated plate and conical–cylindrical double cavities coupled system is established. The related parameters of the unified model are determined by isoparametric transformation. The modified Fourier series are applied to construct the admissible displacement function and the sound pressure tolerance function of the coupled systems. The energy functional of the structure domain and acoustic field domain is established, respectively, and the structure–acoustic coupling potential energy is introduced to obtain the energy functional. Rayleigh–Ritz method was used to solve the energy functional.

Findings

The displacement and sound pressure response of the coupled systems are acquired by introducing the internal point sound source excitation, and the influence of relevant parameters of the coupled systems is researched. Through research, it is found that the impedance wall can reduce the amplitude of the sound pressure response and suppress the resonance of the coupled systems. Besides, the composite laminated plate has a good noise reduction effect.

Originality/value

This study can provide the theoretical guidance for vibration and noise reduction.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Content available

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

Open Access
Article
Publication date: 8 June 2023

Tadej Dobravec, Boštjan Mavrič, Rizwan Zahoor and Božidar Šarler

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Abstract

Purpose

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Design/methodology/approach

A preconditioned phase-field model for dendritic solidification of a pure supercooled melt is solved by the strong-form space-time adaptive approach based on dynamic quadtree domain decomposition. The domain-type space discretisation relies on monomial augmented polyharmonic splines interpolation. The forward Euler scheme is used for time evolution. The boundary-type meshless method solves the Stokes flow around the dendrite based on the collocation of the moving and fixed flow boundaries with the regularised Stokes flow fundamental solution. Both approaches are iteratively coupled at the moving solid–liquid interface. The solution procedure ensures computationally efficient and accurate calculations. The novel approach is numerically implemented for a 2D case.

Findings

The solution procedure reflects the advantages of both meshless methods. Domain one is not sensitive to the dendrite orientation and boundary one reduces the dimensionality of the flow field solution. The procedure results agree well with the reference results obtained by the classical numerical methods. Directions for selecting the appropriate free parameters which yield the highest accuracy and computational efficiency are presented.

Originality/value

A combination of boundary- and domain-type meshless methods is used to simulate dendritic solidification with the influence of fluid flow efficiently.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 31 July 2021

Taro Aso, Toshiyuki Amagasa and Hiroyuki Kitagawa

The purpose of this paper is to propose a scheme that allows users to interactively explore relations between entities in knowledge bases (KBs). KBs store a wide range of…

Abstract

Purpose

The purpose of this paper is to propose a scheme that allows users to interactively explore relations between entities in knowledge bases (KBs). KBs store a wide range of knowledge about real-world entities in a structured form as (subject, predicate, object). Although it is possible to query entities and relations among entities by specifying appropriate query expressions of SPARQL or keyword queries, the structure and the vocabulary are complicated, and it is hard for non-expert users to get the desired information. For this reason, many researchers have proposed faceted search interfaces for KBs. Nevertheless, existing ones are designed for finding entities and are insufficient for finding relations.

Design/methodology/approach

To this problem, the authors propose a novel “relation facet” to find relations between entities. To generate it, they applied clustering on predicates for grouping those predicates that are connected to common objects. Having generated clusters of predicates, the authors generated a facet according to the result. Specifically, they proposed to use a couple of clustering algorithms, namely, agglomerative hierarchical clustering (AHC) and CANDECOMP/PARAFAC (CP) tensor decomposition which is one of the tensor decomposition methods.

Findings

The authors experimentally show test the performance of clustering methods and found that AHC performs better than tensor decomposition. Besides, the authors conducted a user study and show that their proposed scheme performs better than existing ones in the task of searching relations.

Originality/value

The authors propose a relation-oriented faceted search method for KBs that allows users to explore relations between entities. As far as the authors know, this is the first method to focus on the exploration of relations between entities.

Details

International Journal of Web Information Systems, vol. 17 no. 6
Type: Research Article
ISSN: 1744-0084

Keywords

Content available
Article
Publication date: 3 December 2019

Pasquale Legato and Rina Mary Mazza

The use of queueing network models was stimulated by the appearance (1975) of the exact product form solution of a class of open, closed and mixed queueing networks obeying the…

2140

Abstract

Purpose

The use of queueing network models was stimulated by the appearance (1975) of the exact product form solution of a class of open, closed and mixed queueing networks obeying the local balance principle and solved, a few years later, by the popular mean value analysis algorithm (1980). Since then, research efforts have been produced to approximate solutions for non-exponential services and non-pure random mechanisms in customer processing and routing. The purpose of this paper is to examine the suitability of modeling choices and solution approaches consolidated in other domains with respect to two key logistic processes in container terminals.

Design/methodology/approach

In particular, the analytical solution of queueing networks is assessed for the vessel arrival-departure process and the container internal transfer process with respect to a real terminal of pure transshipment.

Findings

Numerical experiments show the extent to which a decomposition-based approximation, under fixed or state-dependent arrival rates, may be suitable for the approximate analysis of the queueing network models.

Research limitations/implications

The limitation of adopting exponential service time distributions and Poisson flows is highlighted.

Practical implications

Comparisons with a simulation-based solution deliver numerical evidence on the companion use of simulation in the daily practice of managing operations in a finite-time horizon under complex policies.

Originality/value

Discussion of some open modeling issues and encouraging results provide some guidelines on future research efforts and/or suitable adaption to container terminal logistics of the large body of techniques and algorithms available nowadays for supporting long-run decisions.

Details

Maritime Business Review, vol. 5 no. 1
Type: Research Article
ISSN: 2397-3757

Keywords

Open Access
Article
Publication date: 8 February 2021

Xuejun Zhao, Yong Qin, Hailing Fu, Limin Jia and Xinning Zhang

Fault diagnosis methods based on blind source separation (BSS) for rolling element bearings are necessary tools to prevent any unexpected accidents. In the field application, the…

Abstract

Purpose

Fault diagnosis methods based on blind source separation (BSS) for rolling element bearings are necessary tools to prevent any unexpected accidents. In the field application, the actual signal acquisition is usually hindered by certain restrictions, such as the limited number of signal channels. The purpose of this study is to fulfill the weakness of the existed BSS method.

Design/methodology/approach

To deal with this problem, this paper proposes a blind source extraction (BSE) method for bearing fault diagnosis based on empirical mode decomposition (EMD) and temporal correlation. First, a single-channel undetermined BSS problem is transformed into a determined BSS problem using the EMD algorithm. Then, the desired fault signal is extracted from selected intrinsic mode functions with a multi-shift correlation method.

Findings

Experimental results prove the extracted fault signal can be easily identified through the envelope spectrum. The application of the proposed method is validated using simulated signals and rolling element bearing signals of the train axle.

Originality/value

This paper proposes an underdetermined BSE method based on the EMD and the temporal correlation method for rolling element bearings. A simulated signal and two bearing fault signal from the train rolling element bearings show that the proposed method can well extract the bearing fault signal. Note that the proposed method can extract the periodic fault signal for bearing fault diagnosis. Thus, it should be helpful in the diagnosis of other rotating machinery, such as gears or blades.

Details

Smart and Resilient Transportation, vol. 3 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 26 April 2024

Xue Xin, Yuepeng Jiao, Yunfeng Zhang, Ming Liang and Zhanyong Yao

This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic…

Abstract

Purpose

This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic response signals.

Design/methodology/approach

The paper conducts time-frequency analysis on signals of pavement dynamic response initially. It also uses two common noise reduction methods, namely, low-pass filtering and wavelet decomposition reconstruction, to evaluate their effectiveness in reducing noise in these signals. Furthermore, as these signals are generated in response to vehicle loading, they contain a substantial amount of data and are prone to environmental interference, potentially resulting in outliers. Hence, it becomes crucial to extract dynamic strain response features (e.g. peaks and peak intervals) in real-time and efficiently.

Findings

The study introduces an improved density-based spatial clustering of applications with Noise (DBSCAN) algorithm for identifying outliers in denoised data. The results demonstrate that low-pass filtering is highly effective in reducing noise in pavement dynamic response signals within specified frequency ranges. The improved DBSCAN algorithm effectively identifies outliers in these signals through testing. Furthermore, the peak detection process, using the enhanced findpeaks function, consistently achieves excellent performance in identifying peak values, even when complex multi-axle heavy-duty truck strain signals are present.

Originality/value

The authors identified a suitable frequency domain range for low-pass filtering in asphalt road dynamic response signals, revealing minimal amplitude loss and effective strain information reflection between road layers. Furthermore, the authors introduced the DBSCAN-based anomaly data detection method and enhancements to the Matlab findpeaks function, enabling the detection of anomalies in road sensor data and automated peak identification.

Details

Smart and Resilient Transportation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 21 July 2023

M. Neumayer, T. Suppan, T. Bretterklieber, H. Wegleiter and Colin Fox

Nonlinear solution approaches for inverse problems require fast simulation techniques for the underlying sensing problem. In this work, the authors investigate finite element (FE…

Abstract

Purpose

Nonlinear solution approaches for inverse problems require fast simulation techniques for the underlying sensing problem. In this work, the authors investigate finite element (FE) based sensor simulations for the inverse problem of electrical capacitance tomography. Two known computational bottlenecks are the assembly of the FE equation system as well as the computation of the Jacobian. Here, existing computation techniques like adjoint field approaches require additional simulations. This paper aims to present fast numerical techniques for the sensor simulation and computations with the Jacobian matrix.

Design/methodology/approach

For the FE equation system, a solution strategy based on Green’s functions is derived. Its relation to the solution of a standard FE formulation is discussed. A fast stiffness matrix assembly based on an eigenvector decomposition is shown. Based on the properties of the Green’s functions, Jacobian operations are derived, which allow the computation of matrix vector products with the Jacobian for free, i.e. no additional solves are required. This is demonstrated by a Broyden–Fletcher–Goldfarb–Shanno-based image reconstruction algorithm.

Findings

MATLAB-based time measurements of the new methods show a significant acceleration for all calculation steps compared to reference implementations with standard methods. E.g. for the Jacobian operations, improvement factors of well over 100 could be found.

Originality/value

The paper shows new methods for solving known computational tasks for solving inverse problems. A particular advantage is the coherent derivation and elaboration of the results. The approaches can also be applicable to other inverse problems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 29 February 2024

Leandro Pinheiro Vieira and Rafael Mesquita Pereira

This study aims to investigate the effect of smoking on the income of workers in the Brazilian labor market.

Abstract

Purpose

This study aims to investigate the effect of smoking on the income of workers in the Brazilian labor market.

Design/methodology/approach

Using data from the 2019 National Health Survey (PNS), we initially address the sample selection bias concerning labor market participation by using the Heckman (1979) method. Subsequently, the decomposition of income between smokers and nonsmokers is analyzed, both on average and across the earnings distribution by employing the procedure of Firpo, Fortin, and Lemieux (2009) - FFL decomposition. Ñopo (2008) technique is also used to obtain more robust estimates.

Findings

Overall, the findings indicate an income penalty for smokers in the Brazilian labor market across both the average and all quantiles of the income distribution. Notably, the most significant differentials and income penalties against smokers are observed in the lower quantiles of the distribution. Conversely, in the higher quantiles, there is a tendency toward a smaller magnitude of this gap, with limited evidence of an income penalty associated with this habit.

Research limitations/implications

This study presents an important limitation, which refers to a restriction of the PNS (2019), which does not provide information about some subjective factors that also tend to influence the levels of labor income, such as the level of effort and specific ability of each worker, whether smokers or not, something that could also, in some way, be related to some latent individual predisposition that would influence the choice of smoking.

Originality/value

The relevance of the present study is clear in identifying the heterogeneity of the income gap in favor of nonsmokers, as in the lower quantiles there was a greater magnitude of differentials against smokers and a greater incidence of unexplained penalties in the income of these workers, while in the higher quantiles, there was low magnitude of the differentials and little evidence that there is a penalty in earnings since the worker is a smoker.

Details

EconomiA, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1517-7580

Keywords

1 – 10 of 196