Search results

1 – 10 of over 4000
Article
Publication date: 3 May 2016

Kai Wang, Shiting Wen, Rizwan Zahoor, Ming Li and Božidar Šarler

The purpose of this paper is to find solution of Stokes flow problems with Dirichlet and Neumann boundary conditions in axisymmetry using an efficient non-singular method of…

Abstract

Purpose

The purpose of this paper is to find solution of Stokes flow problems with Dirichlet and Neumann boundary conditions in axisymmetry using an efficient non-singular method of fundamental solutions that does not require an artificial boundary, i.e. source points of the fundamental solution coincide with the collocation points on the boundary. The fundamental solution of the Stokes pressure and velocity represents analytical solution of the flow due to a singular Dirac delta source in infinite space.

Design/methodology/approach

Instead of the singular source, a non-singular source with a regularization parameter is employed. Regularized axisymmetric sources were derived from the regularized three-dimensional sources by integrating over the symmetry coordinate. The analytical expressions for related Stokes flow pressure and velocity around such regularized axisymmetric sources have been derived. The solution to the problem is sought as a linear combination of the fields due to the regularized sources that coincide with the boundary. The intensities of the sources are chosen in such a way that the solution complies with the boundary conditions.

Findings

An axisymmetric driven cavity numerical example and the flow in a hollow tube and flow between two concentric tubes are chosen to assess the performance of the method. The results of the newly developed method of regularized sources in axisymmetry are compared with the results obtained by the fine-grid second-order classical finite difference method and analytical solution. The results converge with a finer discretization, however, as expected, they depend on the value of the regularization parameter. The method gives accurate results if the value of this parameter scales with the typical nodal distance on the boundary.

Originality/value

Analytical expressions for the axisymmetric blobs are derived. The method of regularized sources is for the first time applied to axisymmetric Stokes flow problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 8 June 2023

Tadej Dobravec, Boštjan Mavrič, Rizwan Zahoor and Božidar Šarler

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Abstract

Purpose

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Design/methodology/approach

A preconditioned phase-field model for dendritic solidification of a pure supercooled melt is solved by the strong-form space-time adaptive approach based on dynamic quadtree domain decomposition. The domain-type space discretisation relies on monomial augmented polyharmonic splines interpolation. The forward Euler scheme is used for time evolution. The boundary-type meshless method solves the Stokes flow around the dendrite based on the collocation of the moving and fixed flow boundaries with the regularised Stokes flow fundamental solution. Both approaches are iteratively coupled at the moving solid–liquid interface. The solution procedure ensures computationally efficient and accurate calculations. The novel approach is numerically implemented for a 2D case.

Findings

The solution procedure reflects the advantages of both meshless methods. Domain one is not sensitive to the dendrite orientation and boundary one reduces the dimensionality of the flow field solution. The procedure results agree well with the reference results obtained by the classical numerical methods. Directions for selecting the appropriate free parameters which yield the highest accuracy and computational efficiency are presented.

Originality/value

A combination of boundary- and domain-type meshless methods is used to simulate dendritic solidification with the influence of fluid flow efficiently.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 August 2011

Yvonne Stokes and Graham Carey

The purpose of this paper is to extend the penalty concept to treat partial slip, free surface, contact and related boundary conditions in viscous flow simulation.

542

Abstract

Purpose

The purpose of this paper is to extend the penalty concept to treat partial slip, free surface, contact and related boundary conditions in viscous flow simulation.

Design/methodology/approach

The penalty partial‐slip formulation is analysed and related to the classical Navier slip condition. The same penalty scheme also allows partial penetration through a boundary, hence the implementation of porous wall boundaries. The finite element method is used for investigating and interpreting penalty approaches to boundary conditions.

Findings

The generalised penalty approach is verified by means of a novel variant of the circular‐Couette flow problem, having partial slip on one of the cylindrical boundaries, for which an analytic solution is derived. Further verificationis provided by consideration of viscous flow over a sphere with partial slip on the surface, and comparison of numerical and classical solutions. Numerical studies illustrate the versatility of the approach.

Research limitations/implications

The penalty approach is applied to some different boundaries: partial slip and partial penetration with no/full slip/penetration as limiting cases; free surface; space‐ and time‐varying boundary conditions which allow progressive contact over time. Application is made to curved and inclined boundaries. Sensitivity of flow to penalty parameters is an avenue for continued research, as is application of the penalty approach for non‐Newtonian flows.

Originality/value

This is the first work to show the relation between penalty formulation of boundary conditions and physical boundary conditions. It provides a method that overcomes past difficulties in implementing partial slip on boundaries of general shape, and which handles progressive contact. It also provides useful benchmark problems for future studies.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 May 2017

Amirmahdi Ghasemi, R. Nikbakhti, Amirreza Ghasemi, Faraz Hedayati and Amir Malvandi

A numerical method is developed to capture the interaction of solid object with two-phase flow with high density ratios. The current computational tool would be the first step of…

Abstract

Purpose

A numerical method is developed to capture the interaction of solid object with two-phase flow with high density ratios. The current computational tool would be the first step of accurate modeling of wave energy converters in which the immense energy of the ocean can be extracted at low cost.

Design/methodology/approach

The full two-dimensional Navier–Stokes equations are discretized on a regular structured grid, and the two-step projection method along with multi-processing (OpenMP) is used to efficiently solve the flow equations. The level set and the immersed boundary methods are used to capture the free surface of a fluid and a solid object, respectively. The full two-dimensional Navier–Stokes equations are solved on a regular structured grid to resolve the flow field. Level set and immersed boundary methods are used to capture the free surface of liquid and solid object, respectively. A proper contact angle between the solid object and the fluid is used to enhance the accuracy of the advection of the mass and momentum of the fluids in three-phase cells.

Findings

The computational tool is verified based on numerical and experimental data with two scenarios: a cylinder falling into a rectangular domain due to gravity and a dam breaking in the presence of a fixed obstacle. In the former validation simulation, the accuracy of the immersed boundary method is verified. However, the accuracy of the level set method while the computational tool can model the high-density ratio is confirmed in the dam-breaking simulation. The results obtained from the current method are in good agreement with experimental data and other numerical studies.

Practical/implications

The computational tool is capable of being parallelized to reduce the computational cost; therefore, an OpenMP is used to solve the flow equations. Its application is seen in the following: wind energy conversion, interaction of solid object such as wind turbine with water waves, etc.

Originality/value

A high efficient CFD approach method is introduced to capture the interaction of solid object with a two-phase flow where they have high-density ratio. The current method has the ability to efficiently be parallelized.

Details

Engineering Computations, vol. 34 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1992

ESTEBAN SAATDJIAN and NOEL MIDOUX

The flow between eccentric rotating cylinders when either the outer or inner cylinder is stationary is analysed both for the creeping flow approximation and for the case when…

Abstract

The flow between eccentric rotating cylinders when either the outer or inner cylinder is stationary is analysed both for the creeping flow approximation and for the case when inertial effects are not negligible. Numerical solutions are obtained using a finite difference ADI scheme and a fine orthogonal bipolar coordinate grid. When the centres of the two cylinders are far enough, a two‐dimensional recirculation zone appears in the region where the gap spacing is greatest. On increasing the eccentricity, the recirculation zone becomes bigger and the separation and reattachment points move towards the region of narrowest gap. Further increase of the eccentricity results in the formation of a saddle point between the cylinders at the region of narrowest gap. As the Reynolds numbers increases, inertial effects modify slightly the recirculation region; the separation point moves upstream and the reattachment point moves downstream when either the inner or the outer cylinder rotate.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2011

V.P. Vallala, J.N. Reddy and K.S. Surana

Most studies of power‐law fluids are carried out using stress‐based system of Navier‐Stokes equations; and least‐squares finite element models for vorticity‐based equations of…

Abstract

Purpose

Most studies of power‐law fluids are carried out using stress‐based system of Navier‐Stokes equations; and least‐squares finite element models for vorticity‐based equations of power‐law fluids have not been explored yet. Also, there has been no study of the weak‐form Galerkin formulation using the reduced integration penalty method (RIP) for power‐law fluids. Based on these observations, the purpose of this paper is to fulfill the two‐fold objective of formulating the least‐squares finite element model for power‐law fluids, and the weak‐form RIP Galerkin model of power‐law fluids, and compare it with the least‐squares finite element model.

Design/methodology/approach

For least‐squares finite element model, the original governing partial differential equations are transformed into an equivalent first‐order system by introducing additional independent variables, and then formulating the least‐squares model based on the lower‐order system. For RIP Galerkin model, the penalty function method is used to reformulate the original problem as a variational problem subjected to a constraint that is satisfied in a least‐squares (i.e. approximate) sense. The advantage of the constrained problem is that the pressure variable does not appear in the formulation.

Findings

The non‐Newtonian fluids require higher‐order polynomial approximation functions and higher‐order Gaussian quadrature compared to Newtonian fluids. There is some tangible effect of linearization before and after minimization on the accuracy of the solution, which is more pronounced for lower power‐law indices compared to higher power‐law indices. The case of linearization before minimization converges at a faster rate compared to the case of linearization after minimization. There is slight locking that causes the matrices to be ill‐conditioned especially for lower values of power‐law indices. Also, the results obtained with RIP penalty model are equally good at higher values of penalty parameters.

Originality/value

Vorticity‐based least‐squares finite element models are developed for power‐law fluids and effects of linearizations are explored. Also, the weak‐form RIP Galerkin model is developed.

Article
Publication date: 3 September 2019

E.J. Sellountos, Jorge Tiago and Adelia Sequeira

This paper aims to describe the 2D meshless local boundary integral equation (LBIE) method for solving the Navier–Stokes equations.

Abstract

Purpose

This paper aims to describe the 2D meshless local boundary integral equation (LBIE) method for solving the Navier–Stokes equations.

Design/methodology/approach

The velocity–vorticity formulation is selected to eliminate the pressure gradient of the equations. The local integral representations of flow kinematics and transport kinetics are derived. The integral equations are discretized using the local RBF interpolation of velocities and vorticities, while the unknown fluxes are kept as independent variables. The resulting volume integrals are computed using the general radial transformation algorithm.

Findings

The efficiency and accuracy of the method are illustrated with several examples chosen from reference problems in computational fluid dynamics.

Originality/value

The meshless LBIE method is applied to the 2D Navier–Stokes equations. No derivatives of interpolation functions are used in the formulation, rendering the present method a robust numerical scheme for the solution of fluid flow problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1995

R. Hillier, D. Kirk and S. Soltani

The current interest in hypersonic flows is leading to significanteffort both to develop CFD methods and also to provide experimentaldata for their evaluation. In our research we…

Abstract

The current interest in hypersonic flows is leading to significant effort both to develop CFD methods and also to provide experimental data for their evaluation. In our research we attempt to integrateCFD and experiments as closely as possible so much so that most of our experimental model designs are based upon preliminary flow field computations in order to identify likely regions of importance and distribute instrumentation as efficiently as possible. The experiments must also have the CFD requirements clearly in mind. In particular we consider it important to separate evaluation on the numerics (essentially the algorithm) from modelling of the physics (which includes the uncertainties of turbulence modelling) to this end our experiments include laminar studies, for both attached and separated flows, for which the physical equations are known exactly, as well as turbulent flow studies. This paper concentrates mainly on our CFD efforts and presents details of a high resolution solver for viscous flows together with their predictions for a range of problems which are the subject of our current and planned experiments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1992

H. MADERS, Y. DEMAY and J.F. AGASSANT

In this study, the stationary flow of a polymeric fluid governed by the upper convected Maxwell law is computed in a 2‐D convergent geometry. A finite element method is used to…

Abstract

In this study, the stationary flow of a polymeric fluid governed by the upper convected Maxwell law is computed in a 2‐D convergent geometry. A finite element method is used to obtain non‐linear discretized equations, solved by an iterative Picard (fixed point) algorithm. At each step, two sub‐systems are successively solved. The first one represents a Newtonian fluid flow (Stokes equations) perturbed by known pseudo‐body forces expressing fluid elasticity. It is solved by minimization of a functional of the velocity field, while the pressure is eliminated by penalization. The second sub‐system reduces to the tensorial differential evolution equation of the extra‐stress tensor for a given velocity field. It is solved by the so‐called ‘non‐consistent Petrov‐Galerkin streamline upwind’ method. As with other decoupled techniques applied to this problem, our simulation fails for relatively low values of the Weissenberg viscoelastic number. The value of the numerical limit point depends on the mesh refinement. When convergence is reached, the numerical solutions for velocity, pressure and stress fields are similar to those obtained by other authors with very costly mixed methods.

Details

Engineering Computations, vol. 9 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1991

KATSUMORI HATANAKA and MUTSUTO KAWAHARA

A new fractional step method in conjunction with the finite element method is proposed for the analysis of the thermal convection and conduction in a fluid region expressed by the…

Abstract

A new fractional step method in conjunction with the finite element method is proposed for the analysis of the thermal convection and conduction in a fluid region expressed by the momentum equations, the equation of continuity and the energy equation. This paper focuses on the features of the present finite element method which gives a simple way of treating the Neumann boundary condition for the pressure Poisson equation. The applicability and effectiveness of the proposed scheme are illustrated through the numerical examples of the two‐dimensional natural convection flow in enclosures with several Rayleigh numbers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 1 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 4000