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Abstract
Purpose – Fault diagnosis methods based on blind source separation (BSS) for rolling element bearings are
necessary tools to prevent any unexpected accidents. In the field application, the actual signal acquisition is
usually hindered by certain restrictions, such as the limited number of signal channels. The purpose of this
study is to fulfill the weakness of the existed BSSmethod.
Design/methodology/approach – To deal with this problem, this paper proposes a blind source
extraction (BSE) method for bearing fault diagnosis based on empirical mode decomposition (EMD) and
temporal correlation. First, a single-channel undetermined BSS problem is transformed into a determined BSS
problem using the EMD algorithm. Then, the desired fault signal is extracted from selected intrinsic mode
functions with a multi-shift correlation method.
Findings – Experimental results prove the extracted fault signal can be easily identified through the
envelope spectrum. The application of the proposed method is validated using simulated signals and rolling
element bearing signals of the train axle.
Originality/value – This paper proposes an underdetermined BSE method based on the EMD and the
temporal correlation method for rolling element bearings. A simulated signal and two bearing fault signal
from the train rolling element bearings show that the proposed method can well extract the bearing fault
signal. Note that the proposed method can extract the periodic fault signal for bearing fault diagnosis. Thus, it
should be helpful in the diagnosis of other rotatingmachinery, such as gears or blades.

Keywords Fault diagnosis, Blind source extraction, Signal decomposition, Temporal correlation

Paper type Research paper

1. Introduction
Rolling element bearings play an important role in industrial manufacturing and rotating
machinery, such as gearboxes, train axles and turbines. Their health states tend to degrade
due to repeating rotations under harsh working conditions. To ensure the industrial safety

© Xuejun Zhao, Yong Qin, Hailing Fu, Limin Jia and Xinning Zhang. Published in Smart and
Resilient Transportation. Published by Emerald Publishing Limited. This article is published under
the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate
and create derivative works of this article (for both commercial and non-commercial purposes),
subject to full attribution to the original publication and authors. The full terms of this licence maybe
seen at http://creativecommons.org/licences/by/4.0/legalcode

This research was funded by the National Natural Science Foundation of China, grant number
61833002.

This research was finished at laboratory of vibration and acoustics (LVA), INSA, Lyon, France.
The authors would like to thank Prof Antoni, Jerome for his helpful suggestions on this work.

SRT
3,1

52

Received 13 September 2020
Revised 16 September 2020
Accepted 16 September 2020

Smart and Resilient
Transportation
Vol. 3 No. 1, 2021
pp. 52-65
EmeraldPublishingLimited
e-ISSN: 2632-0495
p-ISSN: 2632-0487
DOI 10.1108/SRT-09-2020-0006

The current issue and full text archive of this journal is available on Emerald Insight at:
https://www.emerald.com/insight/2632-0487.htm

http://dx.doi.org/10.1108/SRT-09-2020-0006


and operation efficiency, a lot of related prognosis and fault diagnosis methods have been
developed (Wang et al., 2018; Feng et al., 2013; Zhao et al., 2019).

Fault diagnosis based on the blind source separation (BSS) is one of many interesting
branches. Thanks to the valuable work done by Gelle et al. (2001, 2003), BSS began to attract
more and more attention in the condition monitoring and fault diagnosis (Sadhu et al., 2017).
One important precondition for the traditional BSS fault diagnosis is the signal acquisition.
Multiple source signals from different monitoring locations need to be input to identify the
potential fault. However, the installment of multiple sensors are usually unfeasible owing to
certain industrial circumstance (Hong and Liang, 2007). Normally, a single channel of
vibration signal is usually obtained to assess the health condition. Therefore, it is necessary
to investigate the BSS fault diagnosis with single channel of vibration signal, known as the
underdetermined BSS fault diagnosis. Related research can be divided into two categories
(Li et al., 2019). The first one is to create the separation through an estimation of the mixed
matrix between the source and the observed signal. The underdetermined BSS problem can
be converted into a transform domain as a problem of mixed matrix estimation, known as
sparse component analysis (SCA). The other is to transform the underdetermined method
into a positive definition problem through the signal decomposition method.

For the research on the SCA, time–frequency transform methods, such as short-time
Fourier transform (He et al., 2018), wavelet transform (Yang and Nagarajaiah, 2014),
are adopted to transform the observed signals into the time–frequency domain to obtain the
sparse signal representations. Then, the estimation of the mixed matrix is carried out in the
time–frequency domain. Typically, clustering algorithms, such as fuzzy C-means clustering
(He et al., 2018; Hu et al., 2016), K-hyperline clustering (Qin et al., 2015) and density peaks
clustering (Lu et al., 2019) are used to obtain the mixed matrix. Then, the source signal is
usually recovered by minimizing the L1 norm. However, the compound signal in the
frequency domain or other low-dimension space is often not sparse enough, because of
complex influence factors such as the nature of the equipment, the vibration caused by
equipment malfunction, the interaction among the accessories and the noise of the
surrounding environment (Zibulevsky and Pearlmutter, 2001; Bofill and Zibulevsky, 2020).

For the research based on the signal decomposition, signal decomposition methods, such
as wavelet decomposition (Hong and Liang, 2007; Zuo et al., 2005), empirical mode
decomposition (EMD) (Li et al., 2013; Wang et al., 2014a) and variational mode
decomposition (Tang et al., 2016) are firstly used to obtain multi-signal components. Then,
the desired signal sources are estimated through independent component analysis (ICA) (Li
et al., 2013; Wang et al., 2014b). ICA is based on the assumption that the desired components
are statistically independent. And, it is assumed that the independent component must have
non-Gaussian distributions. However, a large number of signals in engineering practice do
not always satisfy all of the assumptions, especially the statistical independence
assumption. In addition, as both source signal and mixing matrix are unknown, the order of
the independent components cannot be determined, which is known as permutation
ambiguity (Hyvärinen et al., 2004). As only one or some desired signals are required for the
fault diagnosis, the blind source extraction (BSE) is more suitable. To address the above-
mentioned problems, Barros and Cichocki (Barros and Cichocki, 2001) proposed to extract
certain signal component with a temporal structure. The desired signal component can be
extracted given prior correlation function information. It is a relief of the computation
burden because only critical signal components are extracted. Zhang and Zhang (Zhang and
Yi, 2006a) further improved this temporal structure method by proposing a multi-shift
temporal correlation method. Inspired by their work, this paper provides a BSE method
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based on the EMD algorithm and the multi-shift temporal correlation for bearing fault
diagnosis.

The rest of this paper is outlined as follows. In Section 2, the fundamentals of EMD and
the temporal correlation method are reviewed. In Section 3, the underdetermined BSE
method for rolling element bearing fault diagnosis is proposed. In Section 4, simulated and
real bearing fault signals, including a vibration data set, acquired from industrial train axle
bearings are used to verify the effectiveness of the proposed method. Conclusions are drawn
in the final section.

2. Fundamentals of empirical mode decomposition and temporal correlation
method
2.1 Temporal correlation method for blind source extraction
BSE is a simpler and faster technique developed based on the BSS. Denote the source matrix
s(t) is composed of n source signal vectors as s(t) = [s1(t),. . . sl(t)] and the observed signal
matrix as x(t) = [x1(t), . . ., xk(t)]. Assume the source matrix s(t) is linearly mixed by an
unknown matrix A describing the linear combination of the s(t) is a full rank k*l matrix.
Thus, the mixture can be written as equation (1):

x tð Þ ¼ A*s tð Þ þ N tð Þ (1)

where A is the mixing matrix, and N(t) is Gaussian noise. And, the separation process is
regarded as underdetermined BSS when k is less than l.

BSS methods usually separate those source vectors simultaneously, accompanying some
problems such as the permutation ambiguity and computation burden (Hyvärinen et al.,
2004). BSE is more attractive when a particular signal component or a specified order of
separation of the signal sources is desired. Many source extraction algorithms extract a
desired signal as the first output given a priori information, such as sparseness (Zibulevsky
and Zeevi, 2002) and high-order statistics (Zhang and Yi, 2006b).

Assume that the desired signal si is temporally correlated, and they have different
autocorrelation functions. Namely, the source signal satisfies the following conditions for a
specific time delay t :

E si tð Þsi t � tð Þ� �
6¼ 0

E sj tð Þsj t � tð Þ� � ¼ 0 8j 6¼ i

(
(2)

whereE stands for the ensemble average operator. t is the time index and t is the time delay.
To obtain the desired signal, the correlation function between the output signal y(t) and

its time-delayed version have to be maximized. Thus, the objective function is shown as
equation (3). The extracted signal y(t) can be obtained by y(t) = vT*« (t), and w is the
extractor vector. To avoid the scaling problem, the objective function is under the constraint
kwk= 1 (Barros and Cichocki, 2001):

J wð Þ ¼
XP
i¼1

E y tð Þy t � tð Þ� �
¼ wTE x tð Þx t � tð ÞT

h i
w (3)

where y(t) is the output signal and y(t) =wT x(t).
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Zhang and Zhang (Zhang and Yi, 2006a) further conducted this objective function to
multi-shift form and obtain the desired de-mixing matrix through a fixed point algorithm
(Zhang and Yi, 2006a). This algorithm is found to be faster and more robust compared to
previous versions. The objective function and the desired extraction vector are shown as
equation (4):

J wð Þ ¼
XP
i¼1

E y tð Þy t � itð Þ� �
¼ wT

XP
i¼1

E x tð Þx t � itð Þ� �0
@

1
Aw (4)

The new objective function extended the temporal correlation to multi-shift form. P is a
constant value usually set between three to five. Increasing the shift increases the number of
sequential correlated components, which will involve more information for signal extraction.
According to the fixed point algorithm, the learning rule stated in equation (13) accepts the
eigenvector of x(t)x(t – t ) as a fixed point corresponding to the maximum eigenvalue. Thus,
the extraction vector can be obtained through equation (5):

Rx tð Þ ¼ E x tð Þx t � tð Þ½ �

w ¼ EIG
XP
i¼1

Rx itð Þ þ Rx itð ÞT
� �0

@
1
A

8>><
>>: (5)

where EIG(t) is the operator that calculates the normalized eigenvector corresponding to the
maximal eigenvalue of the real symmetric matrix T.

2.2 Empirical mode decomposition algorithm
The EMD algorithm was developed by Huang et al. (1998) and can decompose a signal into
multiple components, named intrinsic mode functions (IMFs). An IMF is a function that
satisfies the following two conditions. The first one is that the number of extrema and the
number of zero crossings must either equal or differ at most by one in the whole data set.
The second one is that the mean value of the envelope defined by local maxima, and the
envelope defined by the local minima is zero at any point. Each IMF indicates a simple
oscillatory mode imbedded in the signal. The EMD algorithm contains the following steps
(Gao et al., 2008; Lei et al., 2013).

� Identify all the local maxima and minima of the signal, and interpolate the local
maxima and the minima by cubic spline lines to form upper and lower envelopes.

� Calculate the meanm1 of the upper and lower envelopes, and calculate the difference
between the signal x(t) andm1 as the first component h1.

x tð Þ �m1 ¼ h1 (6)

If h1 is an IMF, set it as the first IMF of x(t). If h1 is not an IMF, take it as the original signal
and repeat the above steps, then:

h1 �m11 ¼ h11 (7)

After d times iterations, h1k becomes an IMF, that is:
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h1 k�1ð Þ �m1k ¼ h1k (8)

Set h1k as c1; thus:
c1 ¼ h1k (9)

� Separate the first IMF c1 from x(t) by:

x tð Þ � c1 ¼ r1 (10)

� Take the residue as the original signal and carry out the same process as above, so
that other IMFs, c2, c3,. . ., cp can be obtained, which satisfy:

rp�1 � cp ¼ rp (11)

The decomposition process can be stopped when rp becomes a monotonic function from
which no more IMFs can be extracted.

� The original signal can be represented by summing up all the IMFs and the residue:

x tð Þ ¼
Xp
i¼1

ci tð Þ þ rp tð Þ (12)

Those obtained IMFs c2, c3, . . ., cp, contain the signal information of different frequency
bands ranging from high to low.

3. Proposed algorithm
Combining the above two mentioned methods, this paper proposes a BSE method based on
EMD and temporal correlation for bearing fault diagnosis. With the help of the EMD, the
single-channel signal can be divided into multiple components. Each component contains
different frequency band information, which can be used for fault signal extraction. Thus,
the undetermined BSE problem can be transferred into a determined blind extraction
problem. After selecting suitable IMFs, the desired fault signal can be extracted.

It should be noted that the input IMFs are crucial to the implementation of the BSE. The
input IMFs should contain most of the useful information. To ensure that input IMFs
contain the most information of the original signal, the cumulative variance contribution
rate of the average eigenvalues (Zhao et al., 2020) is applied in this paper. Input IMFs are
selected according to the contribution rate among all the IMF components. First, the multi-
channel signal xnew is constructed by combining the original signal and decomposed IMFs.
Then, the covariance of the constructed based on the multi-channel signal by Rx = (x(t)x(t)T).
Then,m eigenvalues of variance matrix fromm different frequency components l 1, . . ., lm
are obtained. Arrange those eigenvalues in descending order, and the variance contribution
rate Cj of a certain frequency component is calculated as equation (13):

Cj ¼ l j=
Xm
i¼1

l i (13)

Thus, the cumulative variance contribution of the q frequency components or IMFs can be
obtained by equation (14), and the cumulative variance need to be larger than the setting
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threshold. The contribution rate threshold is set manually. In this paper, the experience
threshold is set as 85%:

Xq
j¼1

Cj ¼
Xq
j¼1

l j=
Xm
i¼1

l i (14)

Thus, the number of the input IMFs can be determined and specific steps of the proposed
method are as follows:

� Step 1. Denote the input signal x[l] with signal length l.
� Step 2. Decompose the input signal into multiple components with the EMD

algorithm.
� Step 3. Determine the input IMFs for BSE according to the cumulative variance

contribution rate of different frequency components based on the setting threshold.
� Step 4. To eliminate the influence of the direct current (DC) component and

correlation among different features, the obtained IMFs are processed through a
centralization method to remove the mean value, and then the signal is processed by
a whitening treatment method based on principal component analysis (Zhao et al.,
2020) shown by equation (15):

Z ¼ WX (15)

where W is the whitening matrix, X is the observed signal matrix and Z is the whitened
signal matrix.

� Step 5. Determine the time delay and extract the desired fault signal using temporal
correlation.

The time delay parameter reflects the periodicity of the bearing fault signal. It can be
obtained by dividing the sampling frequency by fault frequency.

� Step 6. Obtain the envelope spectrum of the extracted fault signal and identify the
fault type.

4. Experimental validation
4.1 Simulated signal validation
To validate the effectiveness of the proposed method, the fault diagnosis is firstly conducted
on a simulated bearing fault signal (He et al., 2018). The simulated signal is composed of
three signal sources shown as equation (16). The sampling frequency is set as 1,000Hz:

s1 tð Þ ¼ cos 2p f1t þ 10ð Þ
s2 tð Þ ¼ 0:5cos 2p f2t þ 10ð Þ
s3 tð Þ ¼ sin 2p f3tð Þ* 1þ a sin 2p f4tð Þ½ �

(16)

where f1 = 20Hz, f2 = 50Hz, f3 = 100Hz, f4 = 10Hz, a = 1.6. The simulated bearing fault
signal is modulated, represented as s3(t). According to equation (1), three source signals are
mixed, and the three observed signals are shown as Figure 1.
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Suppose that only one signal channel can be obtained in the fault diagnosis. The signal in
Figure 1(a) is selected as the observed signal. Then, the envelope analysis is applied to
analyze this signal, and the envelope spectrum is shown in Figure 2. The harmonic
component whose frequency is 20Hz is more obvious in the frequency spectrum, marked
with a red circle. However, the fault frequency is buried by other frequency components,
marked with the red arrow. It can be concluded that the envelope analysis is unable to tell
the bearing fault frequency from other frequency components.

Thus, the proposed method is used to analyze the same signal. With the specific steps of
Section 3, the signal is firstly decomposed into multiple IMFs with EMD algorithm. Then
three IMFs satisfying the setting threshold condition are selected, shown as Figure 3.

The sampling frequency is 1,000Hz and the fault frequency is 100Hz; thus, the time
delay is set to 10 according to the proposed method. Thus, the fault signal can be extracted
through the temporal correlation method. The extracted signal and its corresponding
frequency spectrum is displayed in Figure 4. It can be seen from the figure that the fault
signal is well extracted, and the frequency spectrum is much clearer than that in Figure 2.

4.2 Train rolling bearing signal validation
In this case study, industrial railway axle bearing fault data are used for further comparison
experiments. Our experimental platform for collecting railway axle bearing fault data is
shown in Figure 5. Through a transmission set, a variable speed DC motor with a speed up
to 1,480 r/min is used to drive the rotation of an axle at different speeds. Axle bearings are
assembled to the ends of the axle. A lateral load set and a vertical load set are installed to
impose practical loads during rail vehicle operation. Fan motors are installed to simulate the
effect of natural wind on the opposite of vehicle’s running direction. Sensors were mounted
on 12 o’clock (directly in the vertical load zone) and 3 o’clock (orthogonal to the vertical load
zone) of the bearing casing to acquire vibration data. Two fault bearings were selected from
the railway maintenance center and their degradation conditions are shown as Figure 5(b)
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and Figure 5 (c), respectively. The sampling frequency is set to 5,120Hz. The simulated
speed and vertical load are set to 65 km/h and 272 kN, respectively. The lateral load is 20 kN.
According to the transmission ratio of our experimental platform, an inner race fault
frequency and an outer race fault frequency are calculated as 80 and 61Hz, respectively.

The raw signal of the outer race fault is shown in Figure 6(a). The corresponding
envelope spectrum of the raw signal is shown in Figure 6(b). It can be seen that envelope
spectrum analysis does not perform well when identifying the outer race fault. No obvious
frequency peaks can be found in the spectrum.
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With the proposed method, the same fault signal is analyzed. The number of the chosen
IMFs is 3 based on the contribution rate. Selected IMFs are shown in Figure 7. The fault
signal is further extracted with those IMFs. According to the time delay calculation method,
the time delay is set as 84. The extracted outer race fault signal and its corresponding fault
frequency is shown in Figure 8. Figure 8(a) shows that the extracted fault signal displays
more obvious periodic components. The corresponding envelope spectrum shows that the
fault frequency and its harmonic frequency can be well identified, in which marked with red
arrows.

The inner race fault is further analyzed. The raw signal of the inner race fault and its
corresponding envelope spectrum is shown in Figure 9. It can be seen from the Figure 9(b)
that only the first fault harmonic can be identified through the envelope analysis. Other
frequency harmonics are hidden in the background noise.

Again, the proposed method is applied to analyze the inner race fault signal. The selected
IMFs are shown in the Figure 10. The time delay parameter is set as 64. The extracted inner
race fault signal is shown in Figure 11. The extracted inner race fault signal also shows

Figure 4.
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more obvious periodic components. Figure 11(b) shows that two more fault harmonics can
be identified compared to the direct analysis with envelope analysis.

5. Conclusion
This paper proposes an underdetermined BSE method based on the EMD and the temporal
correlation method for rolling element bearings. A simulated signal and two bearing fault
signal from the train rolling element bearings show that the proposed method can well

Figure 6.
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extract the bearing fault signal. Note that the proposed method can extract the periodic fault
signal for bearing fault diagnosis. Thus, it should be helpful in the diagnosis of other
rotatingmachinery, such as gears or blades.

Further research mainly focus on extending the correlation measure to kernel space. As
the EMD algorithm may have the mode mixing problem, the temporal correlation method in
kernel space may have a better performance in that case.
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