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Abstract
Purpose – Nonlinear solution approaches for inverse problems require fast simulation techniques for
the underlying sensing problem. In this work, the authors investigate finite element (FE) based sensor
simulations for the inverse problem of electrical capacitance tomography. Two known computational
bottlenecks are the assembly of the FE equation system as well as the computation of the Jacobian. Here,
existing computation techniques like adjoint field approaches require additional simulations. This
paper aims to present fast numerical techniques for the sensor simulation and computations with the
Jacobian matrix.

Design/methodology/approach – For the FE equation system, a solution strategy based on Green’s
functions is derived. Its relation to the solution of a standard FE formulation is discussed. A fast stiffness
matrix assembly based on an eigenvector decomposition is shown. Based on the properties of the Green’s
functions, Jacobian operations are derived, which allow the computation of matrix vector products with the
Jacobian for free, i.e. no additional solves are required. This is demonstrated by a Broyden–Fletcher–
Goldfarb–Shanno-based image reconstruction algorithm.

Findings – MATLAB-based time measurements of the new methods show a significant acceleration for all
calculation steps compared to reference implementations with standard methods. E.g. for the Jacobian
operations, improvement factors of well over 100 could be found.

Originality/value – The paper shows new methods for solving known computational tasks for solving
inverse problems. A particular advantage is the coherent derivation and elaboration of the results. The
approaches can also be applicable to other inverse problems.
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1. Introduction
The inverse problem of electrical capacitance tomography (ECT) is to determine the spatial
relative dielectric permittivity distribution «r(x, y) in a domainXROI (region of interest) based
on capacitive measurements (Neumayer et al., 2011, 2012). Figure 1 depicts a 2D scheme of
an ECT sensor for process tomography, where the sensing principle is applied to monitor
material distributions inside pipes or vessels. The region XROI is the interior of a
nonconductive pipe/vessel. Nelec electrodes are attached to the outside of the tube. The
measurements are given by the M ¼ Nelec(Nelec–1) inter electrode capacitances. To obtain
these measurements, an alternating current voltage is applied to one electrode. This
electrode is referred to as the active electrode. At the other electrodes, the displacement
currents to ground are measured, which are proportional to the inter electrode capacitances.
This process is repeated for each electrode. To improve the immunity against external
influences, the sensor is shielded by a screen that is connected to the ground potential.

The solution of the inverse problem of ECT then requires a model for the description of
the material distribution «r(x, y) and a forward model for the simulation of the measurements
(Kaipio and Somersalo, 2004). The domain within the shield is denoted by X. @X denotes its
boundary, and Ci, i ¼ 1, . . ., Nelec, denotes the boundaries of the electrodes. The governing
partial differential equation (PDE) for ECT within X is given by 5·(«r5V) ¼ 0, where V is
the electric scalar potential. In the sensor simulation, the PDE is solved according to the
measurement process. The boundary conditions on all electrodes and the shield are of
Dirichlet type with VCi ¼ V0 on the active electrode and V ¼ 0 on all other boundaries.
Given the solution Vi for the ith electrode being the active electrode, the measurements are

evaluated by qj;i ¼
þ
«r n
!� rVidCj (j ¼ 1,. . ., Nelec, j = i). The results of the integral

evaluation are stored in theNelec�Nelec matrixQ. Hence, the simulation of the measurement
requires Nelec solving the PDE. Note that, actually, onlyM/2 independent measurements can
be made due to the reciprocity property. Also, note that, we compute charges as simulated
measurements, as we skip a normalization by V0. Yet this is no issue for our further
discussion. In measurement applications, a calibration is performed between the sensor and
the simulation model. The calibration compensates for affine deviations between the sensor
and the model (Neumayer et al., 2011); hence, it comprises the strength of the excitation
signal.

Figure 1.
Sketch of the
elements of an ECT
sensor in 2D
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Throughout this work, we will use the finite element (FE) method for the simulation of the
sensor and the description of the material distribution «r(x, y). Following Figure 1, the spatial
permittivity distribution «r(x, y) is modeled by means of the FE discretization in XROI
forming the vector «r [ R

N. The simulation of the sensor is given by the FE equation system:

K̂ «rð ÞV ¼ R (1)

where K̂ «rð Þ is the symmetric NFEM � NFEM stiffness matrix. The NFEM � NElec matrix
R holds the right-hand side vectors for the excitation pattern of the measurements. For
the incorporation of the boundary conditions in the matrix K̂ «rð Þ, we use the scheme of
keeping the essential nodes (Ern and Guermond, 2004). The matrix V is of the same
dimension as the matrix R, its column vectors hold the corresponding solution vectors
for the scalar potential. Thus, equation (1) comprises all NElec solves. It is important to
point out that the matrix K̂ «rð Þ is linear with respect to the elements of «r due to the FE
matrix assembly scheme (Ern and Guermond, 2004). The computation of Q is given by
(Yan et al., 1998):

Q ¼ MV (2)

where we refer to the sparse NElec � NFEM matrix M as measurement matrix. Its
nonzero coefficients represent the integral evaluation discussed in the previous
paragraph. Note that equation (2) also provides the diagonal elements of Q. In our work,
the matrix M is constant. So are the elements of K̂ «rð Þ which represent the pipe and the
backside of the ECT sensor.

Recent publications present a significant potential for the application of ECT technology
for flow monitoring and mass flow metering in pneumatic conveying (Suppan et al., 2021;
Suppan et al., 2019, 2022; Neumayer et al., 2019a, 2019b, 2017). Also, applications in
environmental sensing (Bretterklieber et al., 2016; Flatscher et al., 2017, 2015) and safety
applications have been addressed (Fletcher, 1987). A prerequisite for these applications is
the ability for fast numerical simulation techniques for the sensor. This does not only
comprise the solution of equation (1) where the assembly of K̂ «rð Þ is a known bottleneck but
also computations involving the M �N Jacobian matrix J ¼ @qi

@«r;j

h i
(i ¼ 1,. . ., M, j ¼ 1,. . .,

N). This is relevant for optimization based inverse problems methods, e.g. the gradient g [
RN of the objective function kq «rð Þ � qmeask22 can be evaluated by g ¼ JTDq, with Dq ¼ q
(«r)–qmeas being the residual vector (Neumayer et al., 2019c). Here, q [ RM is a vector holding
the measurements. In statistical inversion theory, the Jacobian is used as an approximation
of the form JD«r to speed up Markov chain Monte Carlo methods (Watzenig et al., 2011;
Brandstatter, 2003).

The computation of the Jacobian has been addressed by several researchers. Two
common techniques are the adjoint field method (Bradley, 2013; Bran�cík, 2004) and
techniques based on the derivation of the stiffness matrix (Adler et al., 2017; Young, 1988),
whereby in (Young, 1988) also an equivalence between these methods is addressed. For the
computation of the Jacobian using adjoint field methods, an additional equation system of
the form of equation (1) has to be solved (Bradley, 2013). This makes the calculation of the
Jacobi expensive, especially since we are interested in matrix vector products of the Jacobian
or its transpose.

In this work, we present fast numerical techniques for the addressed computational
bottlenecks. In particular, we will show that matrix vector products including the Jacobian
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or its transpose can be computed for free, i.e. without any additional solves. The
contributions and novelty of the paper are:

� a solution approach based on Green’s functions;
� fast stiffness matrix assembly technique based on an eigenvector decomposition;
� Jacobian operations to evaluate JD«r and JTDq without an explicit evaluation of the

Jacobian; and
� demonstration of methods the within a BFGS (Broyden–Fletcher–Goldfarb–Shanno)

based Gauss Newton scheme for deterministic inversion.

The methods include dedicated pre-processing steps as well as techniques, which are used
during the solution of inverse problems. In the following sections, we address these points.

2. Solution with Green functions
In this section, we present the solution of equations (1) and (2) by a Green’s functions
approach and a modified charge computation scheme. Note that, the later scheme is not
required but offers some further options, which we will address.

As depicted in Figure 1, only the material values in the domain XROI change. The
properties (geometry and material values) of the domain X ¼ X� XROI do not change. We
therefore propose a charge computation scheme of the form:

Q ¼ QX þM@XROIV@XROI (3)

The computation of the charges is therefore based on potential of theN@XROI FE nodes on the
boundary @XROI, which is the inner wall of the tube. The charge matrix QX represents
the “sensor backside.” QX has the same dimensions as the matrix Q, and M@XROI has the
dimension of Nelec � N@XROI . Both matrices can be determined numerically. For the
determination ofQX , a sensor simulation is performed, where the potential on @XROI is set to
zero. The elements of M@XROI are determined by simulations where the potential on each
node is set to one, while all other nodes have the potential of zero. The addressed
N@XROI þ Nelec computations are carried out in a preprocessing step.

Based on equation (3), the evaluation of Q now requires the evaluation of the potentials
on @XROI, which are held in the matrix V@XROI . Instead of assembling V@XROI from V by
solving (1), we take advantage of the symmetry of K̂ «rð Þ, which allows the computation of
V@XROI by:

K̂ «rð ÞG ¼ E@XROI (4)

V@XROI ¼ GTR (5)

The NFEM � N@XROI matrix E@XROI holds the identity vectors corresponding to the FE node
numbers for the nodes on @XROI. The column vectors of G are referred to as Green’s
functions (Zhang and Fuzhen, 2005). From equation (5), it can be seen that Green’s functions
act as an” inverse operator”, i.e. it can be used to replace K̂ «rð Þ�1. This property will be used
for the later addressed methods. Yet equation (4) has a significant disadvantage as N@XROI

simulations are required. We therefore right multiply equation (4) withMT
@XROI

, which yields
to:
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K̂ «rð ÞGMT
@XROI|fflfflfflffl{zfflfflfflffl}
GQ

¼ E@XROIM
T
@XROI|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

RQ

(6)

and:

Q ¼ QX þ GQ
TR (7)

for the evaluation of the charges. Solving equation (6) for GQ and computing the charges Q by
(7) requires the same computational effort as the original problem, i.e. equations (1) and (2).

2.1 Comment on the choice of the charge computation
The evaluation of Q based on the potential V@XROI as shown in equation (3) is based on the
property that only the material within the domain XROI changes. Yet this choice for the
charge computation is not unique. E.g. also from the nonzero columns ofM in equation (2), a
charge computation scheme can be derived. The Green’s functions then have to be computed
for the corresponding FE nodes, and the remaining scheme is the same as discussed above.
However, we would like to point out that by using V@XROI for the charge calculation, further
possibilities for the solution of (6) arise. E.g. as only the block matrix corresponding to XROI
within K̂ «rð Þ changes, the Schur complement (Strang, 1986) might be used for its solution.
We have not investigated this further in this work but want to make a note on it in relation
to the choice of equation (3).

2.2 Properties of GQ
The computation of GQ in equation (6) offers significant advantages in conjunction with
evaluations including the Jacobian matrix J. This will be addressed in Section 4 and is due to
two properties:

(1) The Green’s functions GQ can be used to replace the product term M@XROIK̂ «rð Þ�1;
and

(2) For the FE nodes in XROI, the Green’s functions GQ equal the negative solution for
the scalar potential V, i.e. GQ ¼ –V holds in XROI.

The first property can be seen from equations (3) and (5).
The second property is less obvious but can be found from an analysis of the right-hand

side matrices R and RQ. For the sake of the length of this derivation, we want to show a
numerical result here. Figure 2 depicts a 2D FE mesh of an ECT sensor with Nelec ¼ 16
electrodes. The mesh has about 5,000 elements and about 3,000 FE nodes. The number of FEs
in XROI (N) is about 700. The field plots in Figure 3 depict a column of V (left), GQ (center) and
the difference (V–GQ) (right) for a 2D FEM simulation of an ECT sensor, respectively. For the
FE nodes in XROI, the scalar potential V equals –GQ. Hence, we can replace V by –GQ for
computations involving the domainXROI. This will be shown in Section 4.1.

3. A fast matrix assembly scheme based on an eigenvector decomposition
A commonly known bottleneck in FE simulations is the assembly of the stiffness matrix.
While this is less of an issue for single simulations, it can become a significant issue for the
solution of inverse problems due to the required repeated simulation process. A well-known
technique is to reduce the assembly effort by splitting K̂ «rð Þ into a constant part and a
variable part which is changed, e.g. as K̂ð «rÞ ¼ K̂ini þ ^N

i¼1«r;iKe;i , where Ke,i are the FE
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element matrices. Here, the linearity of K̂ «rð Þ with respect to the elements of «r can be seen.
Yet the implementation of the update term can still remain a bottleneck, e.g. a loop type
implementation without memory allocation is not suitable here.

Numerical linear algebra routines are highly efficient in the evaluation and storage of
vector products of the form abT or matrix products of the form ABT. Note that these
products create matrices. For our further discussion, we use FEs of the order p ¼ 3, i.e. the
element matrices Ke,i are of the form Ke ¼ [ke,1 ke,2 ke,3], where the vectors ke,i are its column

vectors. Using these vectors, the element matrix can be expressed byKe ¼
Xp
i¼1

ke;ieTi .

We can expand this scheme by placing the column vectors ke,iwithin the sparseNFE� N
matrices K̂ e;i such that the elements of ke,i appear at their global node number. Then the FE
equation system can be assembled by:

Figure 3.
Exemplary
visualization of a
column of V (left), GQ
(center) and the
difference V–GQ
(right) for a 2D FEM
simulation of an ECT
sensor.Within the
domainXROI, the
solution V equals –GQ

Figure 2.
2D FEmesh used for
the numerical studies
in this work
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K̂ «rð Þ ¼ K̂ ini þ
Xp
i¼1

K̂ e;idiag «rð ÞÊT
e;i (8)

where Ê e;i hold the required identity vectors. This scheme, in conjunction with linear
algebra routines, is already a highly efficient assembly technique for K̂ «rð Þ.

A further improvement can be obtained by exploiting the symmetry and positive semi-
definiteness of the element matrices. For the exemplary case of p¼ 3, the eigen-
decomposition provides:

Ke ¼ v1 v2 v3
� � d1

d2

0

2
664

3
775

vT1
vT2
vT3

2
664

3
775 (9)

¼ ffiffiffiffiffi
d1

p
v1

ffiffiffiffiffi
d2

p
v2

� � ffiffiffiffiffi
d1

p
vT1ffiffiffiffiffi

d2
p

vT2

" #
(10)

where the vectors vi are its eigenvectors and di are the corresponding positive eigenvalues.
As one eigenvalue is zero, the decomposition can be written as:

Ke ¼
ffiffiffiffiffi
d1

p
v1

ffiffiffiffiffi
d2

p
v2

� � ffiffiffiffiffi
d1

p
vT1ffiffiffiffiffi

d2
p

vT2

" #
(11)

By defining ai ¼
ffiffiffiffi
di

p
vi , we can therefore assembly Ke by Ke ¼

Xp�1

i¼1

aiaTi . Hence, at the cost

of an eigenvector decomposition in the pre-processing phase, we can reduce the sum in the
assembly process to p – 1, which corresponds to a reduction of one third for linear triangular
elements.

By storing the vectors ai in the NFE � N matrices Âi as addressed before, the stiffness
matrix assembly can be performed by:

K̂ «rð Þ ¼ K̂ ini þ
Xp�1

i¼1

Âidiag «rð ÞÂT
i (12)

The presented decomposition is known in literature as a ATCA decomposition (Hansen,
1998) that can be applied to equilibrium systems. Note that the transpose operation appears
in the first matrix of the ATCA decomposition, whereas in our derivation it appears in the
last matrix. For our derivation, this is due to the notation of the eigenvector decomposition.
Here, a change of the transpose sign can be seen as a definition.

3.1 Timing measurements for equation (12)
To evaluate the performance, we performed timing measurements of our MATLAB
implementation using MATLABs profiler function. For the FE mesh depicted in Figure 2,
we achieved an average execution time for equation (12) of 58 ms on an AMDRyzen 5 2500U
processor. In contrast, a (naive) loop implementation lasted several 10ms. The average
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overall time to compute the charges is 9ms. It should be noted that the presented calculation
schemes also provide the possibility of parallelization.

4. Jacobian operations
In this section, we present the efficient evaluation of matrix vector products JD«r and JTDq,
where J is theM�N Jacobian matrix.

4.1 Fast evaluation of JD«r
We first study the derivation with the expression:

K̂ þ dK
� �

V þ dVð Þ ¼ R (13)

which expresses the deviation of the potential V by dV due to a change of the FE stiffness
matrix K̂ by dK. Here again, the linearity of K̂ is applied. From the product
K̂V þ K̂dV þ dKV þ dKdV ¼ R, we obtain:

K̂dV þ dKV ¼ 0 (14)

The differential change of the scalar potential is therefore:

dV ¼ �K̂
�1
dKV (15)

and due to equation (2), we can also write:

dQ ¼ �MK̂
�1
dK̂V (16)

By this, a derivative ofQwith respect to the «r,i can be expressed by:

dQ
d«r;i

¼ �MK̂
�1 dK̂

d«r;i

" #
V (17)

The elements of dQ
d«r;i

in equation (17) therefore provide the rows of the Jacobian J. dK̂
d«r;i

h i
gives

the element matrix K̂ e;i of the corresponding FE. Note that dK̂
d«r;i

h i
has the same dimension as

the original FE equation system. Due to the linearity, we can therefore express JD«r by

JD «r ¼̂ DQ ¼ �MK̂
�1 ^N

i¼1
Ke;iD«r;i

� 	
V (18)

Equation (18) provides a Jacobian operation, i.e. an evaluation of the matrix vector product
without an explicit evaluation of J but at the cost of solving Nelec equation systems with the
stiffness matrix K̂ . We can know take advantage of the properties of the Green’s functions

GQ. The product MK̂
�1

can be directly replaced by GT
Q . Since ½^N

i¼1Ke;iD«r;i�only leads to
matrix entries for the domainXROI, we can replaceV by –GQ. Thus, we obtain
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JD «r ¼̂ DQ ¼ GT
Q ^N

i¼1
Ke;iD«r;i

� 	
GQ (19)

i.e. a Jacobian operation that can be directly computed from the solution of equation (6).
The inner ½^N

i¼1Ke;iD«r;i�matrix can be assembled by any desired scheme, yet because of
its advantage, we propose the use of the eigenvector-based assembly technique addressed in
Section 3, which leads to:

JD«r ¼̂ DQ ¼ GT
Q

Xp�1

i¼1

Âidiag D«rð ÞÂT
i

2
4

3
5GQ (20)

4.2 Fast evaluation of JTDq
The derivation of a fast evaluation of JTDq based on the use of the Green’s function GT

Q is
unfortunately not as straight forward as the derivation of JD«r shown in Section 4.1. The
derivation is based on studying the transpose of equation (19) for the column vectors of the
matrixV. Furthermore, a matrix decomposition for the formABT is required for the element
matrices. This equals the discussion in Section 3. Because of the length, we will therefore
only state the final result using the eigenvector-based stiffness matrix assembly. The
evaluation of JTDq can be performed by:

g ¼ JTDq ¼
Xp�1

i¼1

GT
QÂi


 �T
� DQGT

QÂi


 �0
@

1
A (21)

where¤ denotes a row- and column-wise multiplication. The matrix DQ is assembled from
the residual vector Dq following the measurement scheme. Elements of Q that are not used
for measurements are set to zero. Hence also the matrix vector product JTDq can be directly
evaluated givenGQ, i.e. after the solution of equation (6).

4.3 Timing measurements for equations (20) and (21)
We again performed timing measurements for our implementation, where we achieved
average execution times for equation (20) of 0.8ms. The computation setup is the same as
discussed in Section 3.1. We also performed timing measurements with a reference
implementation of an adjoint field method (Bradley, 2013), which lasted about 350ms. This
comparison is not entirely fair, as the implementation of the reference method was not fully
optimized. Yet it is relevant that the evaluation of equations (20) and (21) does not require
any additional solves. We found a second comparison by comparing the evaluation of
equation (20) against the evaluation of JD«r when the Jacobian J is given. The evaluation of
JD«r last on average 0.2ms. The factor of four between these times is in favor of equation
(20), since it does not require an explicit evaluation of J. Timing tests for the evaluation of
equation (21) lead to similar results.

5. Application of JTDqwithin a Broyden–Fletcher–Goldfarb–Shanno based
Gauss Newton scheme
The presented numerical techniques are intended to speed up the solution of inverse
problems, i.e. the reconstruction of the material distribution «r from measurements qmeas. In

Electrical
capacitance
tomography

1111



this section, we demonstrate this by means of an exemplary reconstruction example where
we estimate «r using the deterministic approach:

«*r ¼ argmin
«r

�����q «rð Þ � qmeas

�����
2

2

þ a«Tr L
TL«r (22)

The first term in the objective function fits the model against the measurement. The second
term is a regularization term, which is necessary due to the ill-posed nature of the inverse
problem. For the matrix L, we used as second order derivative operator, which leads to a
smoothing of the reconstruction result (Neumayer et al., 2011). The regularization parameter a
was selected using the L-curve criterion (Hansen, 1998). For the solution of Adler et al. (2017),
we use the Gauss–Newton method to compute a descent direction by pk ¼ �H�1

k gk, where Hk
is the Hessian and gk is the gradient of the objective function. Here, we use the BFGS
approximation of the inverse Hessian (Neumayer et al., 2019c). The algorithm is given by:

� evaluate the Newton direction pk ¼ �H�1
k gk;

� set «r,kþ1¼ «r,k þ spk and set sk ¼ spk;
� compute zk ¼ g(«r,kþ1) – g(«r,kþ1); and
� evaluate H�1

kþ1 ¼ H�1
k þ sTk zk þ zTk H

�1
k zk

sTk zkð Þ2 sksTk � H�1
k zksTk þ skzTk H

�1
k

sTk zkð Þ .

The gradient gk is the sum of the gradient of kq «rð Þ � qmeask22 and the gradient of the
regularization term. The first component is evaluated by equation (21), which requires
one computation of the Green’s functions GQ. The gradient of the regularization term can
be computed analytically. The variable s in the second step is a step-size parameter,
which we set to a constant value. In addition, we clipped relative permittivities smaller
than 1. Figure 4 shows an exemplary reconstruction result. The actual material
distribution is two round objects with a relative permittivity of «r ¼ 3.5. The background
permittivity is «r ¼ 1. The boundaries of the inclusions are marked by dashed lines. The
reconstruction result looks typical for the used regularization term. Also, the estimated
relative permittivity meets the true value. From timing measurements, we determined an
average iteration rate in the range of 100 Hz, which corresponds to the previous timing
measurements. The vast amount of computation time for this nonlinear reconstruction

Figure 4.
Exemplary
reconstruction of two
rod type inclusions
using the proposed
BFGS-based
algorithm
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algorithm is reduced to the simulation of the sensor. The example shows the effectiveness
of the methods, whereby the fast iteration rate is only one aspect for its application.
Likewise, the methods offer the possibility to treat larger inverse problems.

6. Conclusion
In this work, we presented fast numerical techniques for FE simulations in ECT. We
demonstrated a fast assembly technique for the FE equation system based on an eigenvector
scheme as well as Jacobian operations. The techniques are based on the linearity of the
problem and take advantage of a solution by Green’s functions due to the symmetry of the
FE stiffness matrix. Timing measurements showed the superior performance of the methods
with respect to standard implementations. In fact, with the present approach, computations
involving the Jacobian can be carried out for free, i.e. no additional effort is required as it is for
known reference techniques like adjoint field methods. The techniques are applicable to other
inverse problems and can also be used for different solution algorithms for inverse problems,
like Kalman filters or inferential techniques. The well-structured notation of the calculations
should allow researchers to easily integrate them into their own code.

References
Adler, A., Boyle, A. and Lionheart, W.R. (2017),“Efficient computations of the Jacobian matrix using

different approaches are equivalent”, in A. Boyle, R. Halter, E. Murphy and A. Adler, (Eds),
Proceedings of the 18th International Conference on Biomedical Applications of Electrical
Impedance Tomography, Thayer School of Engineering, Dartmouth, NH, USA, June 21-24, p. 75.

Bradley, A.M “Pde-constrained optimization and the Adjoint method”, Technical Report. Stanford
University, available at: https://cs.stanford.edu/~ambrad. . ., Tech. Rep.

Bran�cík, L. (2004), “Comparative study of Jacobian calculation techniques in electrical impedance
tomography”, Proceedings of VI. International Workshop” Computational Problems of Electrical
Engineering”, Conference paper, p. 101.

Brandstatter, B. (2003), “Jacobian calculation for electrical impedance tomography based on the
reciprocity principle”, IEEE Transactions onMagnetics, Vol. 39 No. 3, pp. 1309-1312.

Bretterklieber, T., Neumayer, M., Flatscher, M., Becke, A. and Brasseur, G. (2016), “Model based
monitoring of ice accretion on overhead power lines”, 2016 IEEE International Instrumentation
andMeasurement Technology Conference Proceedings, pp. 1-6.

Ern, A. and Guermond, J.-L. (2004), “Theory and practice of finite elements”, 1st ed., Ser. Applied
Mathematical Sciences (Switzerland), No. 159. Springer.

Flatscher, M., Neumayer, M. and Bretterklieber, T. (2017), “Maintaining critical infrastructure under
cold climate conditions: a versatile sensing and heating concept”, Sensors and Actuators A:
Physical, Vol. 267, pp. 538-546.

Flatscher, M., Neumayer, M., Bretterklieber, T., Moser, M.J. and Zangl, H. (2015), “De-icing system with
integrated ice detection and temperature sensing for meteorological devices,” in, 2015 IEEE
Sensors Applications Symposium (SAS), pp. 1-6.

Fletcher, R. (1987), Practical Methods of Optimization, 2nd ed., Wiley-Interscience, New York, NY.
Hansen, P.C. (1998), Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear

Inversion, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

Kaipio, J. and Somersalo, E. (2004), Statistical and Computational Inverse Problems: v. 160, 1st ed., ser.
AppliedMathematical Sciences. Springer.

Neumayer, M., Steiner, G. and Watzenig, D. (2012), “Electrical capacitance tomography: current
sensors/algorithms and future advances”, 2012 IEEE International Instrumentation and
Measurement Technology Conference Proceedings, pp. 929-934.

Electrical
capacitance
tomography

1113

https://cs. stanford.edu/&hx02DC;ambrad&hx2026;


Neumayer, M., Flatscher, M. and Bretterklieber, T. (2019b), “Coaxial probe for dielectric measurements
of aerated pulverized materials”, IEEE Transactions on Instrumentation and Measurement,
Vol. 68 No. 5, pp. 1402-1411.

Neumayer, M., Suppan, T. and Bretterklieber, T. (2019c), “Statistical solution of inverse problems using
a state reduction”, COMPEL – The International Journal for Computation and Mathematics in
Electrical and Electronic Engineering, Vol. 38 No. 5, pp. 1521-1532.

Neumayer, M., Bretterklieber, T., Flatscher, M. and Puttinger, S. (2017), “PCA based state reduction for
inverse problems using prior information”, COMPEL – The International Journal for Computation
andMathematics in Electrical and Electronic Engineering, Vol. 36 No. 5, pp. 1430-1441.

Neumayer, M., Zangl, H., Watzenig, D. and Fuchs, A. (2011), New Developments and Applications in
Sensing Technology, Ser. Lecture Notes in Electrical Engineering, Springer, ch. Current
Reconstruction Algorithms in Electrical Capacitance Tomography, Vol. 83, p. 337.

Neumayer, M., Suppan, T., Flatscher, M., Bretterklieber, T. and Stefan, P. (2019a), “Electrical
capacitance tomography for monitoring of pneumatic conveying processes”, 6. Tagung
Innovation Messtechnik Tagungsband, 2019,” Innovation Messtechnik”, 40-Jahr-Jubliäum
Hottinger BaldwinWien, 28-04-2009.

Schlegl, T., Bretterklieber, T., Neumayer, M. and Zangl, H. (2010), “A novel sensor fusion concept for
distance measurement in automotive applications”, SENSORS, 2010, IEEE, pp. 775-778.

Strang, G. (1986),Introduction to AppliedMathematics, Wellesley-Cambridge Press, Wellesley, MA.
Suppan, T., Neumayer, M., Bretterklieber, T. and Wegleiter, H. (2021), “Thermal drifts of capacitive

flow meters: analysis of effects and model-based compensation”, IEEE Transactions on
Instrumentation andMeasurement, Vol. 70 No. 70.

Suppan, T., Neumayer, M., Bretterklieber, T. and Stefan, P. (2019), “Prior design for tomographic
volume fraction estimation in pneumatic conveying systems from capacitive data”,
Transactions of the Institute of Measurement and Control, Vol. 42 No. 4.

Suppan, T., Neumayer, M., Bretterklieber, T., Stefan, P. and Wegleiter, H. (2022), “A model-based
analysis of capacitive flow metering for pneumatic conveying systems: a comparison between
calibration-based and tomographic approaches”, Sensors, Vol. 22 No. 3.

Watzenig, D., Neumayer, M. and Fox, C. (2011), “Accelerated Markov chain Monte Carlo sampling in
electrical capacitance tomography”, COMPEL – The International Journal for Computation and
Mathematics in Electrical and Electronic Engineering, Vol. 30 No. 6, pp. 1842-1854.

Yan, H., Shao, F. and Wang, S. (1998), “Fast calculation of sensitivity distributions in capacitance
tomography sensors”, Electronics Letters, Vol. 34 No. 20, pp. 1936-1937.

Young, N. (1988),An Introduction to Hilbert Space, Cambridge University Press, New York, NY.
Zhang and Fuzhen (2005),The Schur Complement and Its Applications, Springer, NewHaven.

Corresponding author
Markus Neumayer can be contacted at: neumayer@tugraz.at

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

COMPEL
42,5

1114

mailto:neumayer@tugraz.at

	Fast numerical techniques for FE simulations in electrical capacitance tomography
	1. Introduction
	2. Solution with Green functions
	2.1 Comment on the choice of the charge computation
	2.2 Properties of GQ

	3. A fast matrix assembly scheme based on an eigenvector decomposition
	3.1 Timing measurements for equation (12)

	4. Jacobian operations
	4.1 Fast evaluation of JΔεr
	4.2 Fast evaluation of JTΔq
	4.3 Timing measurements for equations (20) and (21)

	5. Application of JTΔq within a Broyden–Fletcher–Goldfarb–Shanno based Gauss Newton scheme
	6. Conclusion
	References


