Search results

1 – 10 of 268
Article
Publication date: 24 April 2024

Jiayi Sun

This study aims to investigate the most effective approach for governments and enterprises to combat desertification by considering the governance cycle. The focus is on…

Abstract

Purpose

This study aims to investigate the most effective approach for governments and enterprises to combat desertification by considering the governance cycle. The focus is on understanding how the government can incentivize enterprises to actively engage in desertification combat efforts.

Design/methodology/approach

Both the government and the enterprise are treated as rational entities, making strategic choices for joint participation in combating desertification. Recognizing the dynamic nature of the desertification combat area, differential game models are employed to identify the optimal mode for combating desertification.

Findings

The findings underscore the significant influence of the governance cycle duration on the selection of desertification combat modes for government and enterprise. A cooperative mode is best suited to a short governance cycle, while an ecological subsidy mode is optimal for a longer cycle. Enhancing governance technology and shortening the governance cycle are conducive to combating desertification. Reducing taxes alone may not be an effective control strategy; rather, the government can better motivate enterprises by adopting tax rate policies aligned with the chosen governance mode.

Originality/value

This research contributes by elucidating the impact mechanism of the government cycle’s length on the desertification combat process. The results may offer valuable insights for governments in formulating strategies to encourage corporate participation in combating desertification and provide theoretical support for selecting optimal desertification combat modes.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 11 April 2024

Azzh Saad Alshehry, Humaira Yasmin, Rasool Shah, Amjid Ali and Imran Khan

The purpose of this study is to solve two unique but difficult partial differential equations: the foam drainage equation and the nonlinear time-fractional fisher’s equation…

Abstract

Purpose

The purpose of this study is to solve two unique but difficult partial differential equations: the foam drainage equation and the nonlinear time-fractional fisher’s equation. Through our methods, we aim to provide accurate solutions and gain a deeper understanding of the intricate behaviors exhibited by these systems.

Design/methodology/approach

In this study, we use a dual technique that combines the Aboodh residual power series method and the Aboodh transform iteration method, both of which are combined with the Caputo operator.

Findings

We develop exact and efficient solutions by merging these unique methodologies. Our results, presented through illustrative figures and data, demonstrate the efficacy and versatility of the Aboodh methods in tackling such complex mathematical models.

Originality/value

Owing to their fractional derivatives and nonlinear behavior, these equations are crucial in modeling complex processes and confront analytical complications in various scientific and engineering contexts.

Article
Publication date: 24 April 2024

Natiq Yaseen Taha Al-Maneehlawi and Akram Jalil Kadhim Shubbar

The purpose of this paper is to investigate the nonsimultaneous impact of three impactors with spherical tip on the response of a low-velocity impact on a beam.

Abstract

Purpose

The purpose of this paper is to investigate the nonsimultaneous impact of three impactors with spherical tip on the response of a low-velocity impact on a beam.

Design/methodology/approach

In this research, the third-order shear deformation theory of the beam with hyperbolic shear-strain function is used. Hamilton’s principle is applied to derive the motion equations. To simulate nonsimultaneous impacts, by using the Hertz nonlinear contact law, the contact of the impactors with different times is simulated. Comparisons with other articles are carried out in the one impactor form.

Findings

In the parametric study, the histories of the contact force and displacement of the beam are investigated in the presence of only one impactor in the center of the beam and also in the presence of three impactors, one in the center of the beam and the other two around the first impactor with a delay. One of the important and noteworthy points is that the presence of two impactors with a delay causes the maximum contact force and contact time to decrease and the maximum displacement of the beam center to increase.

Originality/value

The original point of this paper is what is the difference between the impact response of one projectile and three nonsimultaneous projectiles on the beam.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 April 2024

Deraniyagalage Chanaka Karunarathna, H.A.H.P. Perera, B.A.K.S. Perera and P.A.P.V.D.S. Disaratna

Delays in utility shifting during road construction have broad ramifications. These delays not only lengthen the project's timeline but also raise expenses and cause problems with…

11

Abstract

Purpose

Delays in utility shifting during road construction have broad ramifications. These delays not only lengthen the project's timeline but also raise expenses and cause problems with resource allocation. Thus, this study investigates the influence of delay in utility shifting for extension of time claims in road construction projects (RCPs) in Sri Lanka.

Design/methodology/approach

The study used a quantitative approach with three rounds of Delphi surveys to gather empirical data. Further, the probability impact assessment was used to carefully analyse the data and appraise the information gathered.

Findings

The findings initially revealed 33 causes of delays in utility shifting for extension of time claims in RCPs in Sri Lanka. Ultimately, 11 severe causes were identified based on their high probability and impact, concluding with 45 strategies that were assigned to overcoming those most severe causes of delay.

Originality/value

This study will contribute to the industry and theory by providing solutions to handle utility-shifting delays with the linkage of preventing time extension claims for RCPs in Sri Lanka. Further, there is a dearth of literature in the research area, both locally and globally. Thus, the findings of this research will provide a benchmark for further detailed studies in other countries as well.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 13 February 2024

Felipa de Mello-Sampayo

This survey explores the application of real options theory to the field of health economics. The integration of options theory offers a valuable framework to address these…

Abstract

Purpose

This survey explores the application of real options theory to the field of health economics. The integration of options theory offers a valuable framework to address these challenges, providing insights into healthcare investments, policy analysis and patient care pathways.

Design/methodology/approach

This research employs the real options theory, a financial concept, to delve into health economics challenges. Through a systematic approach, three distinct models rooted in this theory are crafted and analyzed. Firstly, the study examines the value of investing in emerging health technology, factoring in future advantages, associated costs and unpredictability. The second model is patient-centric, evaluating the choice between immediate treatment switch and waiting for more clarity, while also weighing the associated risks. Lastly, the research assesses pandemic-related government policies, emphasizing the importance of delaying decisions in the face of uncertainties, thereby promoting data-driven policymaking.

Findings

Three different real options models are presented in this study to illustrate their applicability and value in aiding decision-makers. (1) The first evaluates investments in new technology, analyzing future benefits, discount rates and benefit volatility to determine investment value. (2) In the second model, a patient has the option of switching treatments now or waiting for more information before optimally switching treatments. However, waiting has its risks, such as disease progression. By modeling the potential benefits and risks of both options, and factoring in the time value, this model aids doctors and patients in making informed decisions based on a quantified assessment of potential outcomes. (3) The third model concerns pandemic policy: governments can end or prolong lockdowns. While awaiting more data on the virus might lead to economic and societal strain, the model emphasizes the economic value of deferring decisions under uncertainty.

Practical implications

This research provides a quantified perspective on various decisions in healthcare, from investments in new technology to treatment choices for patients to government decisions regarding pandemics. By applying real options theory, stakeholders can make more evidence-driven decisions.

Social implications

Decisions about patient care pathways and pandemic policies have direct societal implications. For instance, choices regarding the prolongation or ending of lockdowns can lead to economic and societal strain.

Originality/value

The originality of this study lies in its application of real options theory, a concept from finance, to the realm of health economics, offering novel insights and analytical tools for decision-makers in the healthcare sector.

Details

Journal of Economic Studies, vol. 51 no. 9
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 8 January 2024

Anas M.M. Awad, Ketut Wikantika, Haytham Ali, Sohaib K.M. Abujayyab and Javad Hashempour

The rapid development of urban areas in Sleman District, Indonesia, has created new challenges for firefighting response services. One of the primary challenges is to identify the…

Abstract

Purpose

The rapid development of urban areas in Sleman District, Indonesia, has created new challenges for firefighting response services. One of the primary challenges is to identify the optimal locations for new fire stations, to improve service quality and maximize service coverage within the specified time.

Design/methodology/approach

This paper proposes a method for precisely calculating travel time that integrates delay time caused by traffic lights, intersections and congestion. The study highlights the importance of precise calculation of travel time in order to provide a more accurate understanding of the service area covered by the fire stations. The proposed method utilizes network analysis in ArcGIS, the analytical hierarchy process (AHP) and simple additive weighting (SAW) to accurately calculate travel time and to identify the best locations for new fire stations. The identification of new site was based on service safety, service quality, service costs and demographic factors and applied to the Sleman district in Indonesia.

Findings

The results showed that the total area covered by old and new fire stations decreased from 61% to 31.8% of the study area when the adjusted default speed scenario was implemented.

Practical implications

The results indicated that the default speed scenario could provide misleading information about the service area, while the adjusted default speed scenario improved service quality and maximized service coverage.

Originality/value

The proposed method provides decision-makers with an effective tool to make informed decisions on optimal locations for new fire stations and thus enhance emergency response and public safety.

Details

International Journal of Emergency Services, vol. 13 no. 1
Type: Research Article
ISSN: 2047-0894

Keywords

Article
Publication date: 18 April 2024

Anton Salov

The purpose of this study is to reveal the dynamics of house prices and sales in spatial and temporal dimensions across British regions.

Abstract

Purpose

The purpose of this study is to reveal the dynamics of house prices and sales in spatial and temporal dimensions across British regions.

Design/methodology/approach

This paper incorporates two empirical approaches to describe the behaviour of property prices across British regions. The models are applied to two different data sets. The first empirical approach is to apply the price diffusion model proposed by Holly et al. (2011) to the UK house price index data set. The second empirical approach is to apply a bivariate global vector autoregression model without a time trend to house prices and transaction volumes retrieved from the nationwide building society.

Findings

Identifying shocks to London house prices in the GVAR model, based on the generalized impulse response functions framework, I find some heterogeneity in responses to house price changes; for example, South East England responds stronger than the remaining provincial regions. The main pattern detected in responses and characteristic for each region is the fairly rapid fading of the shock. The spatial-temporal diffusion model demonstrates the presence of a ripple effect: a shock emanating from London is dispersed contemporaneously and spatially to other regions, affecting prices in nondominant regions with a delay.

Originality/value

The main contribution of this work is the betterment in understanding how house price changes move across regions and time within a UK context.

Details

International Journal of Housing Markets and Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1753-8270

Keywords

Article
Publication date: 5 April 2024

Cédric Gervais Njingang Ketchate, Oluwole Daniel Makinde, Pascalin Tiam Kapen and Didier Fokwa

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Abstract

Purpose

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Design/methodology/approach

The treated single-phase nanofluid is a suspension consisting of water as the working fluid and alumina as a nanoparticle. The anisotropy of the porous medium and the effects of the inclination of the magnetic field are highlighted. The effects of viscous dissipation and thermal radiation are incorporated into the energy equation. The eigenvalue equation system resulting from the stability analysis is processed numerically by the spectral collocation method.

Findings

Analysis of the results in terms of growth rate reveals that increasing the volume fraction of nanoparticles increases the critical Reynolds number. Parameters such as the mechanical anisotropy parameter and Richardson number have a destabilizing effect. The Hartmann number, permeability parameter, magnetic field inclination, Prandtl number, wave number and thermal radiation parameter showed a stabilizing effect. The Eckert number has a negligible effect on the growth rate of the disturbances.

Originality/value

Linear stability analysis of Magnetohydrodynamics (MHD) mixed convection flow of a radiating nanofluid in porous channel in presence of viscous dissipation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 January 2024

Anil Kumar Inkulu and M.V.A. Raju Bahubalendruni

In the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study…

Abstract

Purpose

In the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study aims to propose the reconfiguration of assembly systems by incorporating multiple humans with robots using a human–robot task allocation (HRTA) to enhance productivity.

Design/methodology/approach

A human–robot task scheduling approach has been developed by considering task suitability, resource availability and resource selection through multicriteria optimization using the Linear Regression with Optimal Point and Minimum Distance Calculation algorithm. Using line-balancing techniques, the approach estimates the optimum number of resources required for assembly tasks operating by minimum idle time.

Findings

The task allocation schedule for a case study involving a punching press was solved using human–robot collaboration, and the approach incorporated the optimum number of appropriate resources to handle different types of proportion of resources.

Originality/value

This proposed work integrates the task allocation by human–robot collaboration and decrease the idle time of resource by integrating optimum number of resources.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 3 January 2023

Pravin Hindurao Yadav, Sandeep R. Desai and Dillip Kumar Mohanty

The purpose of this paper is to present investigations on the significant influence of the tube material and fin density on fluid elastic instability and vortex shedding in a…

Abstract

Purpose

The purpose of this paper is to present investigations on the significant influence of the tube material and fin density on fluid elastic instability and vortex shedding in a parallel triangular finned tube array subjected to water cross flow.

Design/methodology/approach

The experiment was conducted on finned tube arrays with a fin height of 6 mm and fin density of 3 fins per inch (fpi) and 9 fpi. A dedicated setup has been developed to examine fluid elastic instability and vortex shedding. Nine parallel triangular tube arrays with a pitch to tube diameter ratio of 1.78 were considered. The plain tube arrays, coarse finned tube arrays and fine finned tube arrays each of steel, copper and aluminium materials were tested. Plain tube arrays were tested to compare the results of the finned tube arrays having an effective tube diameter same as that of the plain tube.

Findings

A significant effect of fin density and tube material with a variable mass damping parameter was observed on the instability threshold. In the parallel triangular finned tube array subjected to water cross flow, a delay in the instability threshold was observed with an increase in fin density. For steel and aluminium tube arrays, the natural frequency is 9.77 Hz and 10.38 Hz, which is close to each other, whereas natural frequency of the copper tubes is 7.40 Hz. The Connors’ stability constant K for steel and aluminium tube arrays is 4.78 and 4.87, respectively, whereas it is 5.76 for copper tube arrays, which increases considerably compared to aluminum and steel tube arrays. The existence of vortex shedding is confirmed by comparing experimental results with Owen’s hypothesis and the Strouhal number and Reynolds number relationship.

Originality/value

This paper’s results contribute to understand the effect of tube materials and fin density on fluid elastic instability threshold of finned tube arrays subjected to water cross flow.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 268