Search results

1 – 10 of over 4000
Article
Publication date: 25 January 2023

Ramesh Chand, Vishal S. Sharma, Rajeev Trehan and Munish Kumar Gupta

The purpose of this study is to find the best geometries among the cylindrical, enamel and honeycomb geometries based upon the mechanical properties (tensile test, compression…

Abstract

Purpose

The purpose of this study is to find the best geometries among the cylindrical, enamel and honeycomb geometries based upon the mechanical properties (tensile test, compression test and shear test). Further this obtained geometry could be used to fabricate products like exoskeleton and its supporting members.

Design/methodology/approach

The present research focuses on the mechanical testing of cylindrical, enamel and honeycomb-shaped parts fabricated through multi-jet printing (MJP) process with a wall thickness of 0.26, 0.33, 0.4 and 0.66 mm. The polymer specimens (for tensile, compression and shear tests) were fabricated using a multi-jet fusion process. The experimental results were compared with the numerical modelling. Finally, the optimal geometry was obtained, and the influence of wall thicknesses on various mechanical properties (tensile, compression and shear) was studied.

Findings

In comparison to cylindrical, enamel structures the honeycomb structures required less time to fabricate and had lower tensile, compressive and shear strengths. The most efficient geometry for fully functional parts where tensile, compressive and shear forces are present during application – cylindrical geometry is preferred followed by enamel, and then honeycomb. It was found that as the wall thickness of various geometries was increased, their ability to withstand tensile, compressive and shear loads also enhanced. The enamel shape structure exhibits greater strain energy storage capacity than other shape structures for compressive loads, and the strength to resist the compressive load will be lower. In the case of cylindrical geometries for tensile loading, the resisting area toward the loading will be higher in comparison to honeycomb- and enamel-based structures. At the same time, the ability to store the stain energy is less. The results of the tensile, compression and shear load finite element analysis using ANSYS are in agreement with those of the experiments.

Originality/value

From the insight of literature review, it is found that a wide range of work is done on fused deposition modeling (FDM) process. But in comparison to FDM, the MJP provide the better dimensional accuracy and surface properties (Lee et al., 2020). Therefore, it is observed that past research works not incorporated the effect of wall thickness of the embedded geometries on mechanical properties of the part fabricated on MJP (Gibson, n.d.). Hence, in this work, effect of wall thickness on tensile, compression and shear strength is considered as the main factor for the honeycomb, enamel and cylindrical geometries.

Article
Publication date: 5 June 2023

Prashant Kumar Choudhary

The objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.

Abstract

Purpose

The objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.

Design/methodology/approach

A novel optimization method is developed to predict the optimal fiber orientation in composite cylindrical shell. The optimization is carried out by coupling analytical and finite element (FE) results with a genetic algorithm (GA)-based optimization scheme developed in MATLAB. Linear eigenvalue were performed to evaluate the buckling behaviour of composite cylinders. In analytical part, besides the buckling analysis, Tsai-Wu failure criteria are employed to analyse the failure of the composite structure.

Findings

The optimal result obtained through this study is compared with traditionally used laminates with 0, 90, ±45 orientation. The results suggest that the application of this novel optimization algorithm leads to an increase of 94% in buckling strength.

Originality/value

The proposed optimal fiber orientation can provide a practical and efficient way for the designers to evaluate the buckling pressure of the composite shells in the design stage.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 July 2022

Lei Huang, Qiushi Xia, Tianhe Gao, Bo Wang and Kuo Tian

The purpose of this paper is to propose a numerical prediction method of buckling loads for shell structures under axial compression and thermal loads based on vibration…

Abstract

Purpose

The purpose of this paper is to propose a numerical prediction method of buckling loads for shell structures under axial compression and thermal loads based on vibration correlation technique (VCT).

Design/methodology/approach

VCT is a non-destructive test method, and the numerical realization of its experimental process can become a promising buckling load prediction method, namely numerical VCT (NVCT). First, the derivation of the VCT formula for thin-walled structures under combined axial compression and thermal loads is presented. Then, on the basis of typical NVCT, an adaptive step-size NVCT (AS-NVCT) calculation scheme based on an adaptive increment control strategy is proposed. Finally, according to the independence of repeated frequency analysis, a concurrent computing framework of AS-NVCT is established to improve efficiency.

Findings

Four analytical examples and one optimization example for imperfect conical-cylindrical shells are carried out. The buckling prediction results for AS-NVCT agree well with the test results, and the efficiency is significantly higher than that of typical numerical buckling methods.

Originality/value

The derivation of the VCT formula for thin-walled shells provides a theoretical basis for NVCT. The adaptive incremental control strategy realizes the adaptive adjustment of the loading step size and the maximum applied load of NVCT with Python script, thus establishing AS-NVCT.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 September 2022

CholUk Ri, Hwan Namgung, Zhunhyok Zhang, Chunghyok Chae, Kwangil Ri, Pongguk Ho and Ryong Zhang

The rotor system supported by the cylindrical roller bearings is widely used in various fields such as aviation, space and machinery due to its importance. In the study of the…

Abstract

Purpose

The rotor system supported by the cylindrical roller bearings is widely used in various fields such as aviation, space and machinery due to its importance. In the study of the dynamic characteristics of the cylindrical roller bearings, it is important to accurately calculate the stiffness of the cylindrical roller bearings. The stiffness of the cylindrical roller bearings is very important in the analysis of the vibration characteristics of the rotor system. Therefore, in this paper, the method of creating a comprehensive stiffness model of the cylindrical roller bearing is mentioned. The purpose of this study is to improve the dynamic stability of the rotor system supported by the cylindrical roller bearing by accurately establishing the comprehensive stiffness calculation model of the cylindrical roller bearings.

Design/methodology/approach

In consideration of the radial clearance of the cylindrical roller bearing, the radial load acting on the cylindrical roller bearing was derived, and based on this, a model for calculating the Hertz contact stiffness of the cylindrical roller bearing was created. Based on the load considering the radial clearance, an oil film stiffness model of the cylindrical roller bearing was created under the elastohydrodynamic lubrication (EHL) theory. Then, the comprehensive stiffness was calculated by combining Hertz contact stiffness and the oil film stiffness of the cylindrical roller bearing, and the dynamic parameters are calculated by using the MATLAB program.

Findings

When the radial clearance of the cylindrical roller bearing is considered, the comprehensive stiffness is larger than when the radial clearance is not taken into account, and the radial clearance of the cylindrical roller bearing is an important factor that directly affects the comprehensive stiffness of the cylindrical roller bearing.

Originality/value

In this paper, based on Hertz contact theory and the EHL theory, the authors investigated the method of creating a comprehensive stiffness model of the cylindrical roller bearing considering the radial clearance. These results will contribute to the theoretical basis for studying the mechanics of cylindrical roller bearings and optimizing their structures, and they will provide an important theoretical basis for analyzing the dynamic characteristics of the rotor system supported by the cylindrical roller bearing.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 April 2015

Nikolay Asmolovskiy, Anton Tkachuk and Manfred Bischoff

Current procedures of buckling load estimation for thin-walled structures may provide very conservative estimates. Their refinement offers the potential to use structure and…

Abstract

Purpose

Current procedures of buckling load estimation for thin-walled structures may provide very conservative estimates. Their refinement offers the potential to use structure and material properties more efficiently. Due to the large variety of design variables, for example laminate layup in composite structures, a prohibitively large number of tests would be required for experimental assessment, and thus reliable numerical techniques are of particular interest. The purpose of this paper is to analyze different methods of numerical buckling load estimation, formulate simulation procedures suitable for commercial software and give recommendations regarding their application. All investigations have been carried out for cylindrical composite shells; however similar approaches are feasible for other structures as well.

Design/methodology/approach

The authors develop a concept to apply artificial load imperfections with the aim to estimate as good as possible lower bounds for the buckling loads of shells for which the actual physical imperfections are not known. Single and triple perturbation load approach, global and local dynamic perturbation approach and path following techniques are applied to the analysis of a cylindrical composite shell with known buckling characteristics. Results of simulations are compared with published experimental data.

Findings

A single perturbation load approach is reproduced and modified. Buckling behavior for negative values of the perturbation load is examined and a pattern similar to a positive perturbation load is observed. Simulations with three perturbation forces show a decreased (i. e. more critical) value of the buckling load compared to the single perturbation load approach. Global and local dynamic perturbation approaches exhibit a behavior suitable for lower bound estimation for structures with arbitrary geometries.

Originality/value

Various load imperfection approaches to buckling load estimation are validated and compared. All investigated methods do not require knowledge of the real geometrical imperfections of the structure. Simulations were performed using a commercial finite element code. Investigations of sensitivity with respect to a single perturbation load are extended to the negative range of the perturbation load amplitude. A specific pattern for a global perturbation approach was developed, and based on it a novel simulation procedure is proposed.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 February 2022

Ratikanta Sahoo

This paper aims to propose a cylindrical conformal wideband antenna with increased directive behaviour using integrated parasitic triangular-shaped elements for WiMAX application.

Abstract

Purpose

This paper aims to propose a cylindrical conformal wideband antenna with increased directive behaviour using integrated parasitic triangular-shaped elements for WiMAX application.

Design/methodology/approach

The proposed antenna is a wideband directional cylindrical conformal antenna consisting of three fork-shaped dipole elements incorporated with parasitic triangular-shaped reflecting components increases the gain of reference conformal antenna. The novel parasitic elements with triangular shapes are designed on the radiating patch as well as the ground plane side. The parasitic triangular elements enable the antenna to enhance the gain along the end-fire direction.

Findings

The proposed antenna has a 20.2% impedance bandwidth ranging from 3.1 to 3.8 GHz. The half power beam-width (HPBW) of the reference antenna in the H-plane is 122.9° and falls to 99.1° after integrating with parasitic elements at 3.3 GHz, whereas it falls from 56.7° to 54.7° in the E-plane. However, at 3.5 GHz, the reference antenna’s HPBW is at 116.8°, which decreases to 92.4° in the H-plane, whereas it reduces from 57.9 to 53.4° in the E-plane. The proposed antenna has a lower HPBW than reference antennas and achieved a gain enhancement of 1.2 dBi, indicating that the pattern becomes more directed.

Originality/value

In the proposed work, the directive behaviour of cylindrical conformal antenna structure with a 30 mm radius of curvature is improved using parasitic reflective elements. The fabricated antennas’ experimental findings are an excellent contender for wireless point-to-point WiMAX applications because it features a wideband, directional properties, and strong gain over the whole operational frequency range of 3.1–3.8 GHz.

Details

Microelectronics International, vol. 39 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 26 August 2014

Damir Krklješ, Dragana Vasiljević and Goran Stojanović

This paper aims to present a prototype of a capacitive angular-position sensor which exploits advantages of flexible/printed electronics. The novelty of the sensor is that the…

Abstract

Purpose

This paper aims to present a prototype of a capacitive angular-position sensor which exploits advantages of flexible/printed electronics. The novelty of the sensor is that the capacitor structure is placed at the circumference of the rotor and stator, that it posses two channels (capacitor structures) electrically shifted for p/4 and that the rotor is common for both channels. The electrodes of the sensing capacitor are digitated, providing a triangular transfer function.

Design/methodology/approach

This sensor prototype consists of two flexible inkjet-printed silver electrodes forming a cylindrical capacitor structure. One of them is wrapped around the stator and another is wrapped around the rotor part of a simple mechanical platform used to precisely adjust the angular displacement.

Findings

The capacitance as a function of angular position was measured using an inductance capacitance impedance (LCZ) Meter, and results are presented for a full-turn measurement range. The experimental results are compared with analytical ones and very good agreement has been achieved.

Originality/value

The proposed capacitive sensor structure can be used as an absolute or an incremental encoder with different resolutions, and it can be applied in automotive industry or robotics.

Details

Sensor Review, vol. 34 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 January 2014

Vimala Palanichamy and N.B. Balamurugan

– The purpose of this paper is to present an analytical model and simulation for cylindrical gate all around MOSFTEs including quantum effects.

Abstract

Purpose

The purpose of this paper is to present an analytical model and simulation for cylindrical gate all around MOSFTEs including quantum effects.

Design/methodology/approach

To incorporating the impact of quantum effects, the authors have used variational method for solving the Poisson and Schrodinger equations. The accuracy of the results obtained using this model is verified by comparing them with simulation results.

Findings

This model is developed to provide an analytical expression for inversion charge distribution function for all regions of device operation. This expression is used to calculate the other important parameters like inversion charge centroid, threshold voltage, inversion charge, gate capacitance and drain current. The calculated expressions for the above parameters are simple and accurate. The validity of this model was checked for the devices with different dimensions and bias voltages.

Practical implications

Simulation based on the compact physical models reduces the cost of developing a sophisticated fabrication technology and shortens the time-to-market. They may also be utilized to explore innovative device structures.

Originality/value

This paper presents, for the first time, a compact quantum analytical model for cylindrical surrounding gate MOSFETs which predicts the device characteristics reasonably well over the entire range of device operation (above threshold as well as sub-threshold region).

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 2021

Rudranarayan Kandi, Pulak Mohan Pandey, Misba Majood and Sujata Mohanty

This paper aims to discuss the successful fabrication of customized tubular scaffolds for tracheal tissue engineering with a novel route using solvent-based extrusion 3D printing.

Abstract

Purpose

This paper aims to discuss the successful fabrication of customized tubular scaffolds for tracheal tissue engineering with a novel route using solvent-based extrusion 3D printing.

Design/methodology/approach

The manufacturing approach involved extrusion of polymeric ink over a rotating predefined pattern to construct customized tubular structure of polycaprolactone (PCL) and polyurethane (PU). Dimensional deviation in thickness of scaffolds were calculated for various layer thicknesses of 3D printing. Physical and chemical properties of scaffolds were investigated by scanning electron microscope (SEM), contact angle measurement, Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD). Mechanical characterizations were performed, and the results were compared to the reported properties of human native trachea from previous reports. Additionally, in vitro cytotoxicity of the fabricated scaffolds was studied in terms of cell proliferation, cell adhesion and hemagglutination assay.

Findings

The developed fabrication route was flexible and accurate by printing customized tubular scaffolds of various scales. Physiochemical results showed good miscibility of PCL/PU blend, and decrease in crystalline nature of blend with the addition of PU. Preliminary mechanical assessments illustrated comparable mechanical properties with the native human trachea. Longitudinal compression test reported outstanding strength and flexibility to maintain an unobstructed lumen, necessary for the patency. Furthermore, the scaffolds were found to be biocompatible to promote cell adhesion and proliferation from the in vitro cytotoxicity results.

Practical implications

The attempt can potentially meet the demand for flexible tubular scaffolds that ease the concerns such as availability of suitable organ donors.

Originality/value

3D printing over accurate predefined templates to fabricate customized grafts gives novelty to the present method. Various customized scaffolds were compared with conventional cylindrical scaffold in terms of flexibility.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 January 2014

Hooman Razmjoo and Masoud Movahhedi

In this paper, a modified meshless method, as one of the numerical techniques that has recently emerged in the area of computational electromagnetics, is extended to solving…

Abstract

Purpose

In this paper, a modified meshless method, as one of the numerical techniques that has recently emerged in the area of computational electromagnetics, is extended to solving time-domain wave equation. The paper aims to discuss these issues.

Design/methodology/approach

In space domain, the fields at the collocation points are expanded into a series of new Shepard's functions which have been suggested recently and are treated with a meshless method procedure. For time discretization of the second-order time-derivative, two finite-difference schemes, i.e. backward difference and Newmark-β techniques, are proposed.

Findings

Both schemes are implicit and always stable and have unconditional stability with different orders of accuracy and numerical dispersion. The unconditional stability of the proposed methods is analytically proven and numerically verified. Moreover, two numerical examples for electromagnetic field computation are also presented to investigate characteristics of the proposed methods.

Originality/value

The paper presents two unconditionally stable schemes for meshless methods in time-domain electromagnetic problems.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 4000