Search results

1 – 10 of 565
Article
Publication date: 22 September 2022

CholUk Ri, Hwan Namgung, Zhunhyok Zhang, Chunghyok Chae, Kwangil Ri, Pongguk Ho and Ryong Zhang

The rotor system supported by the cylindrical roller bearings is widely used in various fields such as aviation, space and machinery due to its importance. In the study of the…

Abstract

Purpose

The rotor system supported by the cylindrical roller bearings is widely used in various fields such as aviation, space and machinery due to its importance. In the study of the dynamic characteristics of the cylindrical roller bearings, it is important to accurately calculate the stiffness of the cylindrical roller bearings. The stiffness of the cylindrical roller bearings is very important in the analysis of the vibration characteristics of the rotor system. Therefore, in this paper, the method of creating a comprehensive stiffness model of the cylindrical roller bearing is mentioned. The purpose of this study is to improve the dynamic stability of the rotor system supported by the cylindrical roller bearing by accurately establishing the comprehensive stiffness calculation model of the cylindrical roller bearings.

Design/methodology/approach

In consideration of the radial clearance of the cylindrical roller bearing, the radial load acting on the cylindrical roller bearing was derived, and based on this, a model for calculating the Hertz contact stiffness of the cylindrical roller bearing was created. Based on the load considering the radial clearance, an oil film stiffness model of the cylindrical roller bearing was created under the elastohydrodynamic lubrication (EHL) theory. Then, the comprehensive stiffness was calculated by combining Hertz contact stiffness and the oil film stiffness of the cylindrical roller bearing, and the dynamic parameters are calculated by using the MATLAB program.

Findings

When the radial clearance of the cylindrical roller bearing is considered, the comprehensive stiffness is larger than when the radial clearance is not taken into account, and the radial clearance of the cylindrical roller bearing is an important factor that directly affects the comprehensive stiffness of the cylindrical roller bearing.

Originality/value

In this paper, based on Hertz contact theory and the EHL theory, the authors investigated the method of creating a comprehensive stiffness model of the cylindrical roller bearing considering the radial clearance. These results will contribute to the theoretical basis for studying the mechanics of cylindrical roller bearings and optimizing their structures, and they will provide an important theoretical basis for analyzing the dynamic characteristics of the rotor system supported by the cylindrical roller bearing.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 March 2018

Shaocheng Zhu, Weihua Zhang and Daniel Nelias

The purpose of this study is to propose a new method to solve transient elasto-hydrodynamic lubrication (EHL) problem.

Abstract

Purpose

The purpose of this study is to propose a new method to solve transient elasto-hydrodynamic lubrication (EHL) problem.

Design/methodology/approach

First, the steady-state EHL solution is modified so that the elastic deformation theory is combined with oil film stiffness distribution instead of steady-state Reynolds equation. Second, subsequent dynamic EHL procedure develops, recursively using transient distributed oil film stiffness and damping, where each time-marching solution is iteratively searched by ensuring both oil film force growth and elastic deformation update for each load increment.

Findings

This method increases calculation speed and provides both distributed EHL stiffness and damping for transient regimes.

Originality/value

This method is of interest for fast applications such as rolling bearings or gears.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 May 2023

Junchao Zhu, GuangCheng Wei, Chen Zong and DaKuan Xin

This paper aim to take the ship shaft stern bearing as the research object, and studies the influence of journal axial vibration on bearing dynamic characteristics under different…

Abstract

Purpose

This paper aim to take the ship shaft stern bearing as the research object, and studies the influence of journal axial vibration on bearing dynamic characteristics under different misaligned angles and rotation speeds.

Design/methodology/approach

Computational fluid dynamics (CFD) and harmonic excitation method were used to build bearing unstable lubrication model, and the dynamic mesh technology was used in calculation.

Findings

The results indicate that journal axial vibration has a significant effect on bearing dynamic characteristics, like maximum oil film pressure, bearing stiffness and damping coefficients, and the effect is positively correlated with journal misaligned angle. The effect of shaft rotation speed and journal axial vibration on bearing dynamics characteristics are independent; they have no coupling. Bearing axial stiffness is mainly affected by the journal axial displacement, bearing axial damping is mainly affected by journal axial velocity and they are positively correlated with the misaligned angle. The influence of rotational speed on bearing axial stiffness and axial damping is not obvious.

Originality/value

This paper establishes the bearing dynamic model by CFD and harmonic excitation method with consideration of cavitation effect and analyzing the influence of journal axial vibration on the dynamic characteristics. The results are benefit to the design of ship propulsion shaft and the selection of stern bearing. Also, they are of great significance to improve the operation stability of the shaft bearing system and the vitality of the ship.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0337/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 October 2019

Dongju Chen, You Zhao, Chunqing Zha and Jingfang Liu

The purpose of this paper is to investigate the effect of fluid–structure interaction in micro-scale on the performance of the hydrostatic spindle and improve the analysis…

Abstract

Purpose

The purpose of this paper is to investigate the effect of fluid–structure interaction in micro-scale on the performance of the hydrostatic spindle and improve the analysis precision of the dynamic performance of hydrostatic spindle.

Design/methodology/approach

Dynamic analysis of hydrostatic spindle before and after fluid–structure interaction is carried out according to stiffness and damping performance of the bearing, which demonstrates that the natural frequency and peak response of the spindle are increased in the micro-scale.

Findings

It is concluded from the simulation and experimental results that there is micro-scale effect in the actual operation of the spindle system and slippage exists in the oil film flow. The error between the modal detection result and the theoretical value is within 10 per cent, which also verifies the correctness of the above conclusions.

Originality/value

This paper analyzes the changes of the bearing performance parameters at macro- and micro-scale, which present the influence of the static and dynamic performance of the spindle in the micro-scale.

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 January 2020

Jiaxing Pei, Xu Han and Yourui Tao

The purpose of this paper is to propose an simple and efficient stiffness model for line contact under elastohydrodynamic lubrication (EHL) and to investigate the gear meshing…

Abstract

Purpose

The purpose of this paper is to propose an simple and efficient stiffness model for line contact under elastohydrodynamic lubrication (EHL) and to investigate the gear meshing stiffness by the proposed model.

Design/methodology/approach

The method combines the surface contact stiffness and film stiffness as EHL contact stiffness. The EHL contact stiffness can be calculated by the external load and displacement of the load action point. The displacement is the sum of deformation of the film and contact surface and is equal to the distance of the mutual approach of two contact bodies.

Findings

The conclusion is drawn that the contact stiffness calculated by the proposed model is smaller than that by the minimum film model and larger than that by the mean film model. It is also concluded that the gear meshing stiffness under EHL is slightly smaller than that under dry contact.

Originality/value

The EHL contact stiffness can be obtained by the increment of external load and mutual approach directly. The calculation of oil film stiffness and surface contact stiffness separately is avoided.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0465

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2018

Jianmei Wang, Zhixiong Li, Sadoughi Mohammadkazem, Min Cai, Jianfeng Kang and Yanan Zhang

The stability characteristics of an oil film directly influence the safety and service life of mill oil-film bearings. However, very limited work has been done to address the…

Abstract

Purpose

The stability characteristics of an oil film directly influence the safety and service life of mill oil-film bearings. However, very limited work has been done to address the stability characteristics of mill oil-film bearings. To this end, this paper aims to investigate the stability characteristics of mill oil-film bearings through theoretical and experimental analysis.

Design/methodology/approach

For the first time, a special designed experiment platform was developed to investigate the stability characteristics of mill oil-film bearings. In addition, a theoretical model of lubricating film of the tested bearings was established to analyze the oil-film stability. The theoretical results were compared with the experimental results.

Findings

The comparison results demonstrate that the critical influential factors on the bearing stability were the eccentricity ratio and the ratio of bearing length to diameter. The mill bearing was likely to be unstable under a small load and at a high rotational speed.

Practical implications

The paper includes implications for suitable operation conditions in practical use of mill oil-film bearings.

Originality/value

This paper fulfills an identified need to investigate oil-film stability of mill bearings for practical applications.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 May 2011

Yuan Kang, Jian‐Lin Lee, Hua‐Chih Huang, Ching‐Yuan Lin, Hsing‐Han Lee, De‐Xing Peng and Ching‐Chu Huang

The paper aims to determine whether the type selection and parameters determination of the compensation are most important for yielding the acceptable or optimized characteristics…

Abstract

Purpose

The paper aims to determine whether the type selection and parameters determination of the compensation are most important for yielding the acceptable or optimized characteristics in design of hydrostatic bearings.

Design/methodology/approach

This paper utilizes the equations of flow equilibrium to determine the film thickness or displacement of worktable with respect to the recess pressure.

Findings

The stiffness due to compensation of constant‐flow pump increases monotonically as recess pressure increases. Also, the paper considers which is larger than that due to orifice compensation and capillary compensation at the same recess pressure ratio.

Originality/value

The findings show that the usage range of recess pressure and compensation parameters can be selected to correspond to the smallest gradient in variations of worktable displacement or film thickness.

Details

Industrial Lubrication and Tribology, vol. 63 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 2024

Vishal Singh and Arvind K. Rajput

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal…

Abstract

Purpose

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal bearing (MHJB) system.

Design/methodology/approach

To simulate the behaviour of PVP lubricant in clearance space of the MHJB system, the modified form of Reynolds equation is numerically solved by using finite element method. Galerkin’s method is used to obtain the weak form of the governing equation. The system equation is solved by Gauss–Seidal iterative method to compute the unknown values of nodal oil film pressure. Subsequently, performance characteristics of bearing system are computed.

Findings

The simulated results reveal that the location of pressurised lubricant inlets significantly affects the oil film pressure distribution and may cause a significant effect on the characteristics of bearing system. Further, the use of PVP lubricant may significantly enhances the performance of the bearing system, namely.

Originality/value

The present work examines the influence of pocket orientation with respect to loading direction on the characteristics of PVP fluid lubricated MHJB system and provides vital information regarding the design of journal bearing system.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0241/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 March 2024

Heji Zhang, Dezhao Lu, Wei Pan, Xing Rong and Yongtao Zhang

The purpose of this study is to design a closed hydrostatic guideway has the ability to resist large-side load, pitch moments and yaw moments, has good stiffness and damping…

Abstract

Purpose

The purpose of this study is to design a closed hydrostatic guideway has the ability to resist large-side load, pitch moments and yaw moments, has good stiffness and damping characteristics, and provides certain beneficial guidance for the design of large-span closed hydrostatic guideway on the basis of providing a large vertical load bearing capacity.

Design/methodology/approach

The Reynolds’ equation and flow continuity equation are solved simultaneously by the finite difference method, and the perturbation method and the finite disturbance method is used for calculating the dynamic characteristics. The static and dynamic characteristics, including recess pressure, flow of lubricating oil, carrying capacity, pitch moment, yaw moment, dynamic stiffness and damping, are comprehensively analyzed.

Findings

The designed closed hydrostatic guideway has the ability to resist large lateral load, pitch moment and yaw moment and has good stiffness and damping characteristics, on the basis of being able to provide large vertical carrying capacity, which can meet the application requirements of heavy two-plate injection molding machine (TPIMM).

Originality/value

This paper researches static and dynamic characteristics of a large-span six-slider closed hydrostatic guideway used in heavy TPIMM, emphatically considering pitch moment and yaw moment. Some useful guidance is given for the design of large-span closed hydrostatic guideway.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 July 2019

Yanqin Zhang, Jichang Sun, Pengrui Kong, Xiangbin Kong and Xiaodong Yu

The purpose of the paper is to analyze the bearing capacity of hydrostatic bearing during the change of film thickness under different working conditions and to improve the…

Abstract

Purpose

The purpose of the paper is to analyze the bearing capacity of hydrostatic bearing during the change of film thickness under different working conditions and to improve the processing efficiency and precision of equipment.

Design/methodology/approach

In this study, Q1-205 double rectangular cavity hydrostatic thrust bearing is selected as the research object. The dynamic mesh method and ANSYS/FLUENT software are used to simulate the curves of oil film thickness and oil pressure under different operating conditions. Finally, the change of pressure in the oil cavity at different operating speeds under a certain inlet flow rate was tested through design experiments.

Findings

When the film thickness was thick, the maximum pressure in the oil cavity at different inlet velocities showed little difference. With a larger inlet flow, the maximum pressure in the oil cavity was higher. The pressure at the edge of the oil seal was linearly distributed. The oil pressure in the downstream side was greater than that in the counter flow side. When the working pressure was low, the pressure in the oil cavity slightly decreased with the increase of working speed. Moreover, the pressure loss at high speed was considerable.

Originality/value

Based on the lubrication theory, the mathematical model of the bearing oil film was set up. The bearing capacity equation of the hydrostatic cavity was derived. The double-rectangular-annular hydrostatic guides studied in this paper have not been reported in previous research literature and the method of dynamic mesh dynamic simulation of variable viscosity is seldom studied before. The bearing characteristics and the change of oil film thickness under different working conditions have been studied systematically and comprehensively. The theoretical analysis results are basically consistent with the experimental results.

Details

Industrial Lubrication and Tribology, vol. 71 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 565